cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224019 Number of n X 3 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

20, 400, 6796, 112436, 1859020, 30756756, 508916456, 8420768936, 139333478144, 2305467501680, 38147189410288, 631198698504112, 10444066884547776, 172811720487440320, 2859412053301829248, 47312978931444876928
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Column 3 of A224024.

Examples

			Some solutions for n=3:
..1..1..1....0..0..0....2..3..3....1..1..3....0..0..0....0..1..3....0..0..0
..2..3..3....2..3..3....0..2..2....0..3..3....1..1..1....0..1..1....2..2..2
..2..2..2....2..3..3....0..1..1....1..2..2....1..3..3....1..1..1....2..2..3
		

Crossrefs

Cf. A224024.

Formula

Empirical: a(n) = 20*a(n-1) - 70*a(n-2) + 228*a(n-3) - 276*a(n-4) + 392*a(n-5) - 196*a(n-6) + 144*a(n-7).
Empirical g.f.: 4*x*(5 + 49*x^2 - 11*x^3 + 85*x^4 - 13*x^5 + 36*x^6) / (1 - 20*x + 70*x^2 - 228*x^3 + 276*x^4 - 392*x^5 + 196*x^6 - 144*x^7). - Colin Barker, Aug 26 2018

A224020 Number of nX4 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

35, 1225, 32523, 772683, 17735200, 403836633, 9186127249, 208983591829, 4754911670136, 108190494364824, 2461721043138176, 56012981686098087, 1274495739407259502, 28999333370466443973, 659838457829407289280
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 4 of A224024

Examples

			Some solutions for n=3
..2..2..3..3....0..1..1..1....0..0..0..1....0..1..2..3....0..1..1..1
..2..2..3..3....0..2..2..3....0..0..1..2....0..0..3..3....1..3..3..3
..1..1..2..3....0..0..0..0....0..0..1..1....0..2..3..3....2..3..3..3
		

Formula

Empirical: a(n) = 35*a(n-1) -347*a(n-2) +1689*a(n-3) -2986*a(n-4) -2311*a(n-5) +23532*a(n-6) -23864*a(n-7) -36468*a(n-8) +100464*a(n-9) +94080*a(n-10)

A224021 Number of nX5 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

56, 3136, 122523, 4002738, 120352359, 3491241557, 99853876444, 2841637297963, 80738139650660, 2292943314015674, 65111906248932329, 1848921234461230235, 52501963543862778240, 1490846712885812140128, 42334133889896297673617
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 5 of A224024

Examples

			Some solutions for n=3
..0..2..3..3..3....1..2..2..2..2....2..2..3..3..3....1..2..2..2..3
..0..2..2..3..3....0..0..1..1..2....0..0..0..0..3....0..0..1..2..2
..0..0..1..2..2....0..0..1..3..3....0..0..0..0..2....0..0..1..1..2
		

Formula

Empirical: a(n) = 56*a(n-1) -1098*a(n-2) +10776*a(n-3) -59038*a(n-4) +197135*a(n-5) -527776*a(n-6) +1780117*a(n-7) -5020078*a(n-8) +3603978*a(n-9) -19091082*a(n-10) +61460622*a(n-11) +49090018*a(n-12) +274177128*a(n-13) +105163104*a(n-14) +354022404*a(n-15) +28705280*a(n-16) +147891456*a(n-17) -1275168*a(n-18) +15980544*a(n-19)

A224022 Number of nX6 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

84, 7056, 387729, 16861106, 646270418, 23151623729, 800511624819, 27185446777503, 915085673227317, 30672939766468469, 1026121422083211534, 34296931507964424065, 1145877902919763472821, 38277578417660461200345
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 6 of A224024

Examples

			Some solutions for n=3
..0..0..0..0..0..1....0..0..0..1..2..3....0..0..1..1..1..1....0..0..0..2..2..2
..0..1..2..2..2..3....0..0..2..3..3..3....0..0..1..2..2..2....0..0..2..2..3..3
..0..1..2..2..2..2....0..0..1..3..3..3....0..0..1..2..2..3....1..1..1..2..3..3
		

Formula

Empirical: a(n) = 84*a(n-1) -2771*a(n-2) +49004*a(n-3) -526214*a(n-4) +3641009*a(n-5) -16632719*a(n-6) +48536326*a(n-7) -53423733*a(n-8) -313959977*a(n-9) +1729942603*a(n-10) -7086418537*a(n-11) +13780962535*a(n-12) +5231265096*a(n-13) -20279410782*a(n-14) +609579098232*a(n-15) +294855159788*a(n-16) +2331852968592*a(n-17) +7276333185488*a(n-18) +4826951354776*a(n-19) +18771064269632*a(n-20) +25683656373760*a(n-21) +16941876341184*a(n-22) +25615354625280*a(n-23) +22113238049280*a(n-24) +5504163840000*a(n-25)

A224023 Number of nX7 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

120, 14400, 1074167, 60614473, 2903448338, 126168072638, 5173325036371, 204938686276996, 7955563596264227, 305205052747757176, 11629551123798091509, 441423012052721410018, 16718581835762003857099
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Column 7 of A224024

Examples

			Some solutions for n=3
..0..0..0..1..1..1..2....0..0..0..0..1..2..3....0..0..0..0..1..3..3
..0..0..0..0..1..2..3....0..0..2..2..2..3..3....0..0..0..0..0..0..0
..0..0..0..2..2..3..3....0..1..2..2..3..3..3....0..0..0..0..0..0..3
		

Formula

Empirical: a(n) = 120*a(n-1) -6060*a(n-2) +173316*a(n-3) -3172287*a(n-4) +39656548*a(n-5) -352443358*a(n-6) +2297379936*a(n-7) -11353877196*a(n-8) +45067977530*a(n-9) -163575910944*a(n-10) +627001572604*a(n-11) -2683978430932*a(n-12) +10780238513518*a(n-13) -32948873206590*a(n-14) +77959459244560*a(n-15) -153434141519476*a(n-16) +1059262494852896*a(n-17) -2694841466898608*a(n-18) +12219509145685508*a(n-19) +11985467868644368*a(n-20) +94047496662754280*a(n-21) +94835829721618640*a(n-22) +1050524403777918000*a(n-23) +2113714471975471104*a(n-24) +5481174460069822848*a(n-25) +10535537672809153264*a(n-26) +27173919094636341472*a(n-27) +47704013358770735568*a(n-28) +67212912534846684448*a(n-29) +62342889733184689824*a(n-30) +49243871592902490976*a(n-31) +27263322225301218304*a(n-32) +12918679041553050240*a(n-33) +2921299068148297728*a(n-34) +856946059741420288*a(n-35) -327218428029860352*a(n-36) -16665963801149440*a(n-37) -24912329585756160*a(n-38) +4712255288340480*a(n-39) +807198452121600*a(n-40) +68097422131200*a(n-41)

A224025 Number of 3 X n 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

64, 1000, 6796, 32523, 122523, 387729, 1074167, 2679260, 6137666, 13104218, 26368076, 50439449, 92358199, 162782299, 277423483, 458907498, 739147146, 1162327788, 1788617172, 2698724343, 3999445995, 5830352933, 8371784327
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2013

Keywords

Comments

Row 3 of A224024.

Examples

			Some solutions for n=3:
..2..2..2....1..2..3....0..0..1....2..3..3....1..1..3....3..3..3....2..2..2
..1..2..2....3..3..3....1..1..3....1..1..1....2..2..2....1..1..2....2..3..3
..3..3..3....0..2..2....2..2..2....1..1..3....0..0..0....1..1..2....0..1..1
		

Crossrefs

Cf. A224024.

Formula

Empirical: a(n) = (353/181440)*n^9 + (5/126)*n^8 + (12287/30240)*n^7 + (131/60)*n^6 + (64877/8640)*n^5 + (135/8)*n^4 + (998257/45360)*n^3 + (53933/2520)*n^2 + (3421/252)*n - 2 for n>1.
Conjectures from Colin Barker, Aug 26 2018: (Start)
G.f.: x*(64 + 360*x - 324*x^2 + 1883*x^3 - 3447*x^4 + 4386*x^5 - 3748*x^6 + 2193*x^7 - 825*x^8 + 182*x^9 - 18*x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)

A224026 Number of 4Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

256, 10000, 112436, 772683, 4002738, 16861106, 60614473, 192152734, 549805730, 1444560196, 3531148666, 8113219067, 17664791690, 36688857572, 73086084181, 140275448000, 260397984212, 469049039484, 822128311864, 1405576043323
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 4 of A224024

Examples

			Some solutions for n=3
..0..0..3....0..2..2....0..1..1....0..1..1....1..1..3....0..2..3....0..1..3
..0..2..2....1..1..1....0..0..3....2..2..3....2..2..3....3..3..3....0..2..3
..2..3..3....0..0..0....0..0..2....0..3..3....0..2..3....0..2..2....2..2..2
..0..0..1....0..1..2....0..2..2....1..3..3....0..2..2....1..3..3....0..1..3
		

Formula

Empirical: a(n) = (3551/47900160)*n^12 + (89357/39916800)*n^11 + (787537/21772800)*n^10 + (54391/145152)*n^9 + (3628073/1451520)*n^8 + (219389/19200)*n^7 + (790310011/21772800)*n^6 + (11979533/145152)*n^5 + (26980967/217728)*n^4 + (119696723/907200)*n^3 + (46358119/831600)*n^2 + (56717/396)*n + 52 for n>2

A224027 Number of 5Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

1024, 100000, 1859020, 17735200, 120352359, 646270418, 2903448338, 11324147154, 39352493380, 124192808325, 361131166470, 978546580876, 2493201619797, 6016880535375, 13837190690133, 30477772502130, 64570854690796
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 5 of A224024

Examples

			Some solutions for n=3
..0..0..2....0..0..2....0..0..2....0..0..2....0..0..0....0..0..0....0..0..0
..0..2..3....0..2..2....0..2..3....0..0..2....0..0..1....0..2..2....0..0..2
..1..3..3....0..2..3....1..2..3....0..2..3....1..1..1....0..0..0....0..2..3
..0..1..3....2..3..3....0..1..2....2..3..3....1..2..2....0..0..1....1..2..2
..0..3..3....1..1..3....0..0..0....2..2..3....1..1..2....0..0..3....1..3..3
		

Formula

Empirical: a(n) = (769/444787200)*n^15 + (781507/10897286400)*n^14 + (732989/444787200)*n^13 + (6062213/239500800)*n^12 + (4527293/15966720)*n^11 + (49818529/21772800)*n^10 + (300432343/21772800)*n^9 + (9176781683/152409600)*n^8 + (2072451091/10886400)*n^7 + (1971136933/4354560)*n^6 + (16020797923/19958400)*n^5 + (55454431657/59875200)*n^4 - (688455589/2402400)*n^3 - (18610604083/37837800)*n^2 + (69728249/15015)*n + 2530 for n>3

A224028 Number of 6Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

4096, 1000000, 30756756, 403836633, 3491241557, 23151623729, 126168072638, 589287463547, 2427724545612, 9007001464858, 30566042176352, 96033091778636, 282028543897612, 780257746938799, 2046679053764299, 5117642427934938
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 6 of A224024

Examples

			Some solutions for n=3
..0..0..2....0..0..0....0..0..2....0..0..0....0..0..0....0..0..0....0..0..2
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....1..2..3....0..2..3....0..0..3....1..2..3....2..2..2....0..2..2
..1..1..3....0..1..3....1..1..2....1..1..1....1..3..3....1..1..2....1..1..3
..0..1..2....0..2..2....1..1..1....1..2..3....1..1..3....1..2..2....0..1..1
..1..1..2....0..0..1....0..1..1....2..3..3....1..1..3....0..0..1....1..2..2
		

Formula

Empirical: a(n) = (42587101/1600593426432000)*n^18 + (23341517/16167610368000)*n^17 + (15783371/356638464000)*n^16 + (31606091/33965568000)*n^15 + (17663092277/1207084032000)*n^14 + (133630090943/747242496000)*n^13 + (3090381263819/1810626048000)*n^12 + (861240248921/67060224000)*n^11 + (16435251844841/219469824000)*n^10 + (3455775661663/10450944000)*n^9 + (654929669980007/603542016000)*n^8 + (1738593710779/653184000)*n^7 + (82071435647381/16717428000)*n^6 + (429177771626699/59439744000)*n^5 - (15320544442081/40864824000)*n^4 - (2761354550633/92664000)*n^3 - (36294722496521/593762400)*n^2 + (776634903133/6126120)*n + 95040 for n>4

A224029 Number of 7Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal.

Original entry on oeis.org

16384, 10000000, 508916456, 9186127249, 99853876444, 800511624819, 5173325036371, 28312680063277, 135506470642023, 580135646807494, 2259103048155965, 8104442812190513, 27055697058861926, 84736180130576912
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Row 7 of A224024

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..2....0..0..2....0..0..2....0..2..2....0..0..0....0..0..2....0..0..0
..2..2..2....2..2..3....2..2..2....0..0..1....2..2..2....2..2..2....1..2..2
..0..2..3....0..2..3....0..0..2....0..0..3....2..2..3....1..1..1....0..2..2
..2..2..3....1..3..3....0..1..1....0..3..3....1..2..2....1..1..3....0..1..2
..1..2..3....2..3..3....0..1..2....2..2..2....0..2..3....0..0..1....1..2..3
		

Formula

Empirical: a(n) = (3642102403/12772735542927360000)*n^21 + (1828819507/93573154160640000)*n^20 + (69800896237/91233825306624000)*n^19 + (267473506319/12804747411456000)*n^18 + (13894779382807/32011868528640000)*n^17 + (30522003341/4269957120000)*n^16 + (2960783594047/30893806944000)*n^15 + (396044918673407/376610217984000)*n^14 + (53677409656497673/5649153269760000)*n^13 + (20242631281245749/289700167680000)*n^12 + (2982742874548721/7242504192000)*n^11 + (1737409609193009/919683072000)*n^10 + (258559348958260442861/39544072888320000)*n^9 + (593900455377212143/36212520960000)*n^8 + (3978525082857841027/141228831744000)*n^7 + (1946054065487953843/47076277248000)*n^6 + (49893145987491754499/666913927680000)*n^5 - (383268963922742041/1984862880000)*n^4 - (252880325219600223869/123193822752000)*n^3 - (154838552783847197/36664828200)*n^2 + (12390598682741/2909907)*n + 3399959 for n>5
Showing 1-10 of 11 results. Next