A224055 Number of nX6 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing.
148, 4690, 57911, 428949, 2392915, 11231300, 46853641, 179545949, 646161612, 2215310269, 7295294696, 23173431000, 71137228340, 211216789027, 606907100518, 1688654512840, 4553248388246, 11908977568334, 30245780813181
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..0..0..0..0..0....0..0..0..0..2..0....0..1..1..0..0..0....0..0..0..0..2..0 ..2..0..0..0..0..0....0..0..1..2..1..0....1..2..2..0..0..0....0..0..2..2..1..0 ..1..1..0..0..0..0....0..2..2..1..1..1....2..2..2..1..1..0....2..2..2..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..178
Formula
Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/593480641388544000)*n^23 + (1/11491439984640000)*n^22 + (59/20274183401472000)*n^21 + (204271/2432902008176640000)*n^20 + (34451/17377871486976000)*n^19 + (18917939/448166159400960000)*n^18 + (769849/995924798668800)*n^17 + (226679623/17575143505920000)*n^16 + (2152013/11412430848000)*n^15 + (706815667/289700167680000)*n^14 + (9710969/517321728000)*n^13 + (22058018740169/52725430517760000)*n^12 + (883262112781/878757175296000)*n^11 + (30292372315283/675967057920000)*n^10 + (425362282393/5977939968000)*n^9 + (18858448588311589/8002967132160000)*n^8 - (2707211596157/114328101888000)*n^7 + (2638894624680309119/59133034920960000)*n^6 - (590269621381831/6636704256000)*n^5 + (21039414018476657/25935541632000)*n^4 - (10575054526365457/1955457504000)*n^3 + (4363361309424841/172982779200)*n^2 + (520015184729/102965940)*n - 216272 for n>7
Comments