cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224094 Denominators of poly-Cauchy numbers c_n^(2).

Original entry on oeis.org

1, 4, 36, 48, 1800, 720, 35280, 20160, 226800, 10080, 731808, 665280, 1967565600, 11211200, 129729600, 34594560, 18745927200, 28641600, 371536925760, 3990729600, 3226504881600, 4877558400, 466663317120, 550720684800, 2192556726360000, 175404538108800
Offset: 0

Views

Author

Takao Komatsu, Mar 30 2013

Keywords

Comments

The poly-Cauchy numbers c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006233, A222627, A224095 (numerators).

Programs

  • Mathematica
    Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = denominator(sum(k=0, n,stirling(n, k, 1)/(k+1)^2)); \\ Michel Marcus, Nov 15 2015