A224095 Numerators of poly-Cauchy numbers c_n^(2).
1, 1, -5, 11, -1103, 1627, -374473, 1220651, -92146157, 31595747, -20000218625, 176776749931, -5607610511548471, 374753409522157, -55207553310144173, 202183428095237231, -1614396705602979083803
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
Programs
-
Mathematica
Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
-
PARI
a(n) = numerator(sum(k=0, n,stirling(n, k, 1)/(k+1)^2)); \\ Michel Marcus, Nov 15 2015
Comments