cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224095 Numerators of poly-Cauchy numbers c_n^(2).

Original entry on oeis.org

1, 1, -5, 11, -1103, 1627, -374473, 1220651, -92146157, 31595747, -20000218625, 176776749931, -5607610511548471, 374753409522157, -55207553310144173, 202183428095237231, -1614396705602979083803
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006232, A222627, A224094 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = numerator(sum(k=0, n,stirling(n, k, 1)/(k+1)^2)); \\ Michel Marcus, Nov 15 2015