cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A224098 Denominators of poly-Cauchy numbers c_n^(4).

Original entry on oeis.org

1, 16, 1296, 6912, 6480000, 2592000, 6223392000, 14224896000, 1440270720000, 320060160000, 2811600481536000, 511200087552000, 255506749760021760000, 291175783202304000, 16846598885276160000
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006233, A222748, A224094, A224096, A224099 (numerators).

Programs

  • Mathematica
    Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^4, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = denominator(sum(k=0, n,stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015

A224101 Numerators of poly-Cauchy numbers c_n^(5).

Original entry on oeis.org

1, 1, -211, 4241, -57453709, 29825987, -7362684132917, 198504470798947, -415989828245529323, 730328251215062341, -628191544925589374756597, 1131010588175721446183783, -80125844020238574218022657310343
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006232, A223023, A224095, A224097, A224099, A224100 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = numerator(sum(k=0, n, stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015
Showing 1-2 of 2 results.