A224103
Denominators of poly-Cauchy numbers of the second kind hat c_n^(3).
Original entry on oeis.org
1, 8, 216, 576, 108000, 43200, 14817600, 16934400, 571536000, 127008000, 101428588800, 18441561600, 709031939616000, 1731457728000, 373994869248, 24932991283200, 229679599076928000, 491293260057600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
-
Table[Denominator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^3, {k, 0, n}]], {n, 0, 25}]
-
a(n) = denominator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^3)); \\ Michel Marcus, Nov 14 2015
A224106
Numerators of poly-Cauchy numbers of the second kind hat c_n^(4).
Original entry on oeis.org
1, -1, 97, -1147, 3472243, -653983, 74118189437, -1058923294571, 777910456216513, -285577840060819, 23240203016832136201, -216925341603548096639, 1222007019804929270080450811
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, and K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu and F.-Z. Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725 [math.NT], 2016.
-
Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^4, {k, 0, n}]], {n, 0,
25}]
-
a(n) = numerator(sum(k=0, n,(-1)^k*stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015
A224109
Numerators of poly-Cauchy numbers of the second kind hat c_n^(5).
Original entry on oeis.org
1, -1, 275, -6289, 92902541, -154473289, 13399738273333, -377635608584803, 822223497000264427, -1492945924219675973, 1323386773861946436609781, -2448418399924413951578983, 177825546947844845937070681472647
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..260
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, V. Laohakosol, and K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu and F. Z. Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725 [math.NT], 2016.
-
Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]
-
a(n) = numerator(sum(k=0, n,(-1)^k*stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015
Showing 1-3 of 3 results.
Comments