cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224106 Numerators of poly-Cauchy numbers of the second kind hat c_n^(4).

Original entry on oeis.org

1, -1, 97, -1147, 3472243, -653983, 74118189437, -1058923294571, 777910456216513, -285577840060819, 23240203016832136201, -216925341603548096639, 1222007019804929270080450811
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

Crossrefs

Cf. A002657, A223902, A224105, A114102, A224104, A224105 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^4, {k, 0, n}]], {n, 0,
      25}]
  • PARI
    a(n) = numerator(sum(k=0, n,(-1)^k*stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015