A224108 Numbers k such that tau(k) divides k, sigma(k) and phi(k).
1, 56, 184, 248, 376, 504, 568, 632, 672, 824, 864, 1016, 1208, 1248, 1336, 1528, 1592, 1656, 1784, 1824, 1912, 2016, 2104, 2168, 2232, 2488, 2688, 2872, 2936, 2976, 3064, 3360, 3384, 3448, 3512, 3552, 3704, 3832, 3896, 3968, 4024, 4128, 4284, 4320, 4792, 4856, 5048
Offset: 1
Keywords
Examples
56 is in the sequence because 56 has 8 divisors (1, 2, 4, 7, 8, 14, 28, 56), and 8 is a divisor of 56, as well as of sigma(56) = 120 and of phi(56) = 24.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
Crossrefs
Programs
-
Mathematica
Select[Range[10000], GCD[DivisorSigma[1, #], #, EulerPhi[#], DivisorSigma[0, #]] == DivisorSigma[0, #] &] Select[Range[5100],AllTrue[{#,DivisorSigma[1,#],EulerPhi[#]}/ DivisorSigma[ 0,#], IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 02 2019 *)
-
PARI
is(n)=my(t=numdiv(n)); n%t==0 && sigma(n)%t==0 && eulerphi(n)%t==0 \\ Charles R Greathouse IV, Mar 31 2013
Comments