A224146 T(n,k) = Number of n X k 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
2, 4, 3, 7, 9, 4, 11, 22, 16, 5, 16, 46, 49, 25, 6, 22, 86, 124, 92, 36, 7, 29, 148, 275, 272, 155, 49, 8, 37, 239, 554, 691, 526, 242, 64, 9, 46, 367, 1037, 1573, 1509, 930, 357, 81, 10, 56, 541, 1831, 3296, 3827, 2985, 1536, 504, 100, 11, 67, 771, 3082, 6472, 8838
Offset: 1
Examples
Some solutions for n=3, k=4 ..0..0..0..0....0..0..0..0....0..0..0..0....1..1..0..0....0..0..0..0 ..1..1..0..0....0..1..0..0....0..1..1..0....1..1..0..0....0..0..0..1 ..1..1..1..1....0..1..1..1....0..1..1..0....1..1..1..0....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..925
Formula
Empirical: columns k=1..7 are polynomials of degree k for n>0,0,0,1,2,3,4.
Empirical: rows n=1..7 are polynomials of degree 2*n.
Comments