A224168 Number of n X 3 0..3 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
50, 684, 4739, 22988, 87878, 282372, 794220, 2010035, 4668304, 10095924, 20559019, 39765666, 73565736, 130901340, 225070360, 375375241, 609239622, 964886492, 1494683371, 2269272536, 3382617538, 4958111188, 7155904828, 10181634047
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..1....1..1..0....2..2..2....0..0..1....0..0..1....1..0..0....2..2..1 ..1..2..1....2..1..0....2..2..2....1..2..1....0..0..1....2..3..2....3..3..1 ..2..2..3....2..3..3....2..2..3....3..3..1....0..2..2....3..3..3....3..3..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A224173.
Formula
Empirical: a(n) = (353/181440)*n^9 + (17/560)*n^8 + (9083/30240)*n^7 + (1039/720)*n^6 + (46769/8640)*n^5 + (3863/360)*n^4 + (411149/22680)*n^3 + (14863/1260)*n^2 + (6497/1260)*n - 3.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(50 + 184*x + 149*x^2 + 378*x^3 - 327*x^4 + 412*x^5 - 228*x^6 + 107*x^7 - 22*x^8 + 3*x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025