A224169 Number of n X 4 0..3 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
130, 3526, 38561, 272130, 1460836, 6425876, 24197608, 80350989, 240416852, 658890738, 1675303647, 3992383968, 8991162356, 19265941324, 39500748718, 77861024489, 148143119762, 273013479180, 488783426991, 852309147046, 1450785202572, 2415419887660, 3940248617356
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..1..1....0..1..1..0....3..1..1..0....0..2..1..1....0..2..2..0 ..1..2..2..3....0..3..2..1....3..3..3..3....3..2..2..1....0..3..3..0 ..2..2..2..3....2..3..2..2....3..3..3..3....3..3..3..1....2..3..3..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A224173.
Formula
Empirical: a(n) = (3551/47900160)*n^12 + (17561/13305600)*n^11 + (376693/21772800)*n^10 + (106499/725760)*n^9 + (229093/290304)*n^8 + (4775993/1209600)*n^7 + (239805679/21772800)*n^6 + (2313469/80640)*n^5 + (85217281/1088640)*n^4 - (37150333/907200)*n^3 - (7297121/207900)*n^2 + (474241/1386)*n - 383 for n>3.
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025