A224170 Number of n X 5 0..3 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
296, 14751, 242114, 2335459, 16625026, 95808564, 468021427, 1994287334, 7568051210, 25994968917, 81880904262, 239073335825, 652853600502, 1679943141302, 4099447427041, 9538065127010, 21257876699694, 45567034926263, 94269674457770, 188804401330651, 367061634874676
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0..1..1....0..0..0..2..1....0..0..0..0..0....0..0..0..1..0 ..0..0..3..3..3....0..2..3..2..2....0..1..1..2..0....1..3..1..1..0 ..0..1..3..3..3....0..3..3..3..2....0..1..2..2..2....1..3..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A224173.
Formula
Empirical: a(n) = (769/444787200)*n^15 + (348923/10897286400)*n^14 + (103091/194594400)*n^13 + (52907/9580032)*n^12 + (943843/19958400)*n^11 + (2062183/7257600)*n^10 + (18840953/10886400)*n^9 + (179917349/30481920)*n^8 + (117380839/4354560)*n^7 + (1362686849/21772800)*n^6 + (9998925647/39916800)*n^5 - (85242803/147840)*n^4 + (54417504217/43243200)*n^3 - (64383420173/12612600)*n^2 + (221650083/10010)*n - 34678 for n>6.
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025