A224174 Number of 3 X n 0..3 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
20, 400, 4739, 38561, 242114, 1253770, 5588411, 22075529, 78911656, 259222964, 791787532, 2269535600, 6149706181, 15847969147, 39036356744, 92295124070, 210220319550, 462719488690, 986952548003, 2044823738533, 4124042889158
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..1....2..1..0....1..1..0....0..0..1....1..1..0....0..1..2....0..3..1 ..2..2..1....2..1..1....1..1..0....2..3..1....1..2..0....1..2..3....2..3..1 ..2..2..3....2..1..1....1..2..3....3..3..1....1..3..3....1..2..3....2..3..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A224173.
Formula
Empirical: a(n) = (1/3629463552000)*n^18 + (1/80654745600)*n^17 + (5153/10461394944000)*n^16 + (33323/2615348736000)*n^15 + (186871/747242496000)*n^14 + (566921/149448499200)*n^13 + (390989/8211456000)*n^12 + (13776731/28740096000)*n^11 + (283859867/73156608000)*n^10 + (359930911/14631321600)*n^9 + (13824123559/114960384000)*n^8 + (6442744127/14370048000)*n^7 + (11719345643/8895744000)*n^6 + (10048449577/3736212480)*n^5 + (1016995336979/217945728000)*n^4 + (32943067909/9081072000)*n^3 + (5801778061/735134400)*n^2 - (393478/36465)*n + 10.
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025