cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A224193 Number of 6Xn 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

28, 784, 13524, 163746, 1519738, 11444292, 72710554, 400958714, 1960596602, 8643660124, 34817290272, 129528551708, 449030731802, 1461369918218, 4493166765659, 13121663640985, 36566337458326, 97628603745396
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 6 of A224190

Examples

			Some solutions for n=3
..0..1..1....0..1..0....0..0..0....0..1..1....0..0..0....0..0..0....0..1..0
..1..1..1....0..1..0....1..0..0....1..1..1....0..0..0....0..1..0....0..2..0
..1..2..1....1..1..1....1..0..0....2..1..1....0..0..0....1..1..1....1..2..1
..1..2..1....1..2..2....1..1..1....2..2..1....1..2..1....2..1..1....1..2..1
..2..2..1....2..2..2....2..1..1....2..2..2....1..2..1....2..2..2....2..2..1
..2..2..1....2..2..2....2..2..2....2..2..2....1..2..2....2..2..2....2..2..1
		

Formula

Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/228261785149440000)*n^23 + (2993/8515157028618240000)*n^22 + (1189/64508765368320000)*n^21 + (112787/162193467211776000)*n^20 + (4033303/202741834014720000)*n^19 + (100023181/224083079700480000)*n^18 + (75069509/9336794987520000)*n^17 + (1246517053/10545086103552000)*n^16 + (6306246257/4393785876480000)*n^15 + (18213412351/1255367393280000)*n^14 + (38516770459/313841848320000)*n^13 + (9185104716379/10545086103552000)*n^12 + (1753572682469/337983528960000)*n^11 + (42653443424521/1647669703680000)*n^10 + (118327836601829/1098446469120000)*n^9 + (1768182454793/4763670912000)*n^8 + (698418986666497/666913927680000)*n^7 + (26428459959973901/11087444047680000)*n^6 + (31671555902461499/7391629365120000)*n^5 + (14625059352544909/2463876455040000)*n^4 + (438413487383/71292721500)*n^3 + (10755031442327/2248776129600)*n^2 + (2550558151/1338557220)*n + 1

A224184 Number of n X n 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

3, 36, 684, 15779, 408222, 11444292, 340780382, 10635858679, 344674481333, 11518916935288, 394956511554556, 13839075880034056, 494013661434533634, 17921279299283914328, 659361786079631903704, 24563166523294240335463
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Diagonal of A224190

Examples

			Some solutions for n=3
..0..1..0....0..1..0....2..0..0....0..0..2....0..0..1....1..0..0....0..2..0
..0..1..0....0..1..1....2..0..0....2..2..2....0..0..1....1..0..0....2..2..1
..1..2..0....1..1..1....2..1..1....2..2..2....1..1..2....2..0..0....2..2..1
		

A224185 Number of n X 3 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

22, 158, 684, 2205, 5852, 13524, 28176, 54153, 97570, 166738, 272636, 429429, 655032, 971720, 1406784, 1993233, 2770542, 3785446, 5092780, 6756365, 8849940, 11458140, 14677520, 18617625, 23402106, 29169882, 36076348, 44294629, 54016880
Offset: 1

Views

Author

R. H. Hardin, Apr 01 2013

Keywords

Comments

Column 3 of A224190.

Examples

			Some solutions for n=3.
..1..0..0....0..1..0....2..1..0....0..2..1....0..0..0....0..0..1....0..0..0
..2..0..0....1..2..0....2..2..0....0..2..1....1..0..0....0..0..2....1..1..0
..2..0..0....1..2..2....2..2..1....1..2..1....2..2..0....0..0..2....2..2..0
		

Crossrefs

Cf. A224190.

Formula

Empirical: a(n) = (23/360)*n^6 + (27/40)*n^5 + (205/72)*n^4 + (49/8)*n^3 + (319/45)*n^2 + (21/5)*n + 1.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(22 + 4*x + 40*x^2 - 35*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A224186 Number of n X 4 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

46, 548, 3526, 15779, 55438, 163746, 424326, 992607, 2138488, 4305730, 8191976, 14853709, 25840868, 43366252, 70515252, 111501861, 171977322, 259398184, 383460946, 556610879, 794633026, 1117333790, 1549321930, 2120898195
Offset: 1

Views

Author

R. H. Hardin, Apr 01 2013

Keywords

Comments

Column 4 of A224190.

Examples

			Some solutions for n=3:
..0..1..0..0....1..1..1..1....2..1..0..0....0..1..2..0....0..1..0..0
..1..1..0..0....1..1..1..1....2..1..1..0....0..2..2..0....0..1..1..0
..1..2..0..0....1..1..1..1....2..2..1..1....0..2..2..0....1..1..1..0
		

Crossrefs

Cf. A224190.

Formula

Empirical: a(n) = (41/4032)*n^8 + (55/336)*n^7 + (179/160)*n^6 + (169/40)*n^5 + (615/64)*n^4 + (215/16)*n^3 + (56759/5040)*n^2 + (2173/420)*n + 1.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(46 + 134*x + 250*x^2 - 91*x^3 + 127*x^4 - 84*x^5 + 36*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A224187 Number of nX5 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

86, 1600, 14751, 89380, 408222, 1519738, 4844576, 13669953, 34953776, 82399174, 181434331, 376946128, 744873156, 1409068188, 2565196232, 4513845865, 7705502706, 12800568660, 20748212991, 32888515396, 51083111090, 77880377510
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Column 5 of A224190

Examples

			Some solutions for n=3
..0..1..0..0..0....0..1..2..1..1....0..0..1..1..1....0..1..2..1..1
..0..1..1..0..0....0..1..2..1..1....0..2..2..1..1....2..2..2..2..1
..1..2..2..2..2....0..1..2..2..2....0..2..2..1..1....2..2..2..2..1
		

Formula

Empirical: a(n) = (1009/907200)*n^10 + (913/36288)*n^9 + (15121/60480)*n^8 + (8677/6048)*n^7 + (226987/43200)*n^6 + (110621/8640)*n^5 + (3804217/181440)*n^4 + (206081/9072)*n^3 + (130433/8400)*n^2 + (3793/630)*n + 1

A224188 Number of n X 6 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

148, 4102, 52591, 422488, 2469182, 11444292, 44435746, 150015321, 452158538, 1240740774, 3145970477, 7456438392, 16672410340, 35430409240, 71995370532, 140596619273, 264988109400, 483746928198, 857992826459, 1482422036736
Offset: 1

Views

Author

R. H. Hardin, Apr 01 2013

Keywords

Comments

Column 6 of A224190.

Examples

			Some solutions for n=3:
..0..0..1..1..1..0....0..1..1..0..0..0....0..2..2..1..1..0....0..1..1..1..0..0
..0..1..1..1..2..1....0..1..1..2..0..0....0..2..2..2..1..0....1..1..2..2..2..0
..0..1..1..1..2..2....0..2..2..2..2..0....2..2..2..2..2..0....2..2..2..2..2..0
		

Formula

Empirical: a(n) = (761/8553600)*n^12 + (811/302400)*n^11 + (98797/2721600)*n^10 + (105751/362880)*n^9 + (2800757/1814400)*n^8 + (429167/75600)*n^7 + (1442737/97200)*n^6 + (373033/13440)*n^5 + (100027061/2721600)*n^4 + (15191569/453600)*n^3 + (16485617/831600)*n^2 + (4273/630)*n + 1.

A224189 Number of nX7 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

239, 9503, 165212, 1727738, 12741432, 72710554, 340780382, 1366188661, 4823267213, 15322738603, 44529268480, 119909493132, 302279622352, 719306742780, 1626780581324, 3516536949577, 7300336446323, 14614022023815
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Column 7 of A224190

Examples

			Some solutions for n=3
..0..0..0..0..1..0..0....0..0..1..2..0..0..0....0..0..1..1..2..0..0
..0..1..1..2..1..1..0....0..0..1..2..1..0..0....0..2..2..2..2..1..1
..0..2..2..2..2..1..0....0..0..1..2..1..1..1....2..2..2..2..2..2..1
		

Formula

Empirical: a(n) = (118519/21794572800)*n^14 + (93527/444787200)*n^13 + (6343/1710720)*n^12 + (9456619/239500800)*n^11 + (1028647/3628800)*n^10 + (10525213/7257600)*n^9 + (5190079/952560)*n^8 + (47462621/3110400)*n^7 + (99470417/3110400)*n^6 + (542507339/10886400)*n^5 + (226284461/3991680)*n^4 + (453542611/9979200)*n^3 + (60780847/2522520)*n^2 + (96119/12870)*n + 1

A224191 Number of 4Xn 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

15, 225, 2205, 15779, 89380, 422488, 1727738, 6272940, 20614382, 62231446, 174603882, 459586532, 1143581612, 2707062766, 6128575771, 13328965295, 27955737041, 56730240471, 111704250407, 213954477597, 399506181220
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 4 of A224190

Examples

			Some solutions for n=3
..0..0..0....0..0..1....0..1..0....0..1..0....0..0..0....1..0..0....0..0..0
..0..0..1....0..0..1....0..2..0....0..2..0....0..0..0....1..0..0....1..0..0
..0..0..2....1..2..2....0..2..1....2..2..1....0..1..1....2..1..0....1..1..2
..0..1..2....1..2..2....0..2..2....2..2..2....0..2..2....2..1..0....2..2..2
		

Formula

Empirical: a(n) = (1/106748928000)*n^16 + (1/1482624000)*n^15 + (7/266872320)*n^14 + (127/197683200)*n^13 + (311999/28740096000)*n^12 + (212351/1596672000)*n^11 + (31937/26127360)*n^10 + (83129/9676800)*n^9 + (34840531/746496000)*n^8 + (9481183/48384000)*n^7 + (90994151/143700480)*n^6 + (123257231/79833600)*n^5 + (43399375531/15567552000)*n^4 + (2360326763/648648000)*n^3 + (218135/61776)*n^2 + (581099/360360)*n + 1

A224192 Number of 5Xn 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

21, 441, 5852, 55438, 408222, 2469182, 12741432, 57644194, 233385140, 859145920, 2912085006, 9181289736, 27151590510, 75840301088, 201262238349, 509972027785, 1239109721281, 2897739996141, 6543276177902, 14306873805792, 30366198279340
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 5 of A224190

Examples

			Some solutions for n=3
..1..2..0....0..1..0....0..1..0....0..0..0....0..2..1....0..0..2....1..1..0
..1..2..0....1..1..1....0..1..0....0..0..0....0..2..1....0..1..2....1..1..0
..2..2..0....2..1..1....0..1..2....1..2..1....0..2..1....1..2..2....2..2..0
..2..2..1....2..2..1....0..2..2....1..2..1....1..2..2....1..2..2....2..2..1
..2..2..2....2..2..2....1..2..2....2..2..2....1..2..2....2..2..2....2..2..1
		

Formula

Empirical: a(n) = (1/1379196149760000)*n^20 + (1/12538146816000)*n^19 + (467/101624979456000)*n^18 + (223/1302884352000)*n^17 + (9641/2134978560000)*n^16 + (44237/498161664000)*n^15 + (115879/86102016000)*n^14 + (24029081/1494484992000)*n^13 + (623419/4055040000)*n^12 + (18199033/15328051200)*n^11 + (3421967251/459841536000)*n^10 + (263944057/6967296000)*n^9 + (8168948285977/52306974720000)*n^8 + (193145489021/373621248000)*n^7 + (507138710909/373621248000)*n^6 + (13262560631/4790016000)*n^5 + (3783062210933/882161280000)*n^4 + (108121887773/22054032000)*n^3 + (27314271011/6518191680)*n^2 + (14737223/8314020)*n + 1

A224194 Number of 7Xn 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

36, 1296, 28176, 424326, 4844576, 44435746, 340780382, 2249643632, 13068669308, 67970305364, 320903298144, 1390873688506, 5586138847981, 20953028554541, 73888808853350, 246365532350644, 780525967950004, 2359724042194860
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 7 of A224190

Examples

			Some solutions for n=3
..0..1..0....0..0..0....0..0..0....0..1..0....0..0..0....2..0..0....0..0..0
..0..1..0....0..0..0....0..1..0....1..2..0....0..0..0....2..0..0....0..1..1
..0..1..0....0..1..1....0..1..1....1..2..0....0..2..1....2..0..0....0..1..1
..0..1..1....1..1..1....0..1..1....1..2..2....2..2..1....2..1..0....0..2..1
..0..1..1....1..2..2....0..1..1....1..2..2....2..2..1....2..2..1....0..2..1
..1..2..1....2..2..2....0..2..2....1..2..2....2..2..1....2..2..1....0..2..2
..1..2..1....2..2..2....2..2..2....2..2..2....2..2..1....2..2..2....0..2..2
		

Formula

Empirical polynomial of degree 28 (see link above)
Showing 1-10 of 10 results.