cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224193 Number of 6Xn 0..2 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

28, 784, 13524, 163746, 1519738, 11444292, 72710554, 400958714, 1960596602, 8643660124, 34817290272, 129528551708, 449030731802, 1461369918218, 4493166765659, 13121663640985, 36566337458326, 97628603745396
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 6 of A224190

Examples

			Some solutions for n=3
..0..1..1....0..1..0....0..0..0....0..1..1....0..0..0....0..0..0....0..1..0
..1..1..1....0..1..0....1..0..0....1..1..1....0..0..0....0..1..0....0..2..0
..1..2..1....1..1..1....1..0..0....2..1..1....0..0..0....1..1..1....1..2..1
..1..2..1....1..2..2....1..1..1....2..2..1....1..2..1....2..1..1....1..2..1
..2..2..1....2..2..2....2..1..1....2..2..2....1..2..1....2..2..2....2..2..1
..2..2..1....2..2..2....2..2..2....2..2..2....1..2..2....2..2..2....2..2..1
		

Formula

Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/228261785149440000)*n^23 + (2993/8515157028618240000)*n^22 + (1189/64508765368320000)*n^21 + (112787/162193467211776000)*n^20 + (4033303/202741834014720000)*n^19 + (100023181/224083079700480000)*n^18 + (75069509/9336794987520000)*n^17 + (1246517053/10545086103552000)*n^16 + (6306246257/4393785876480000)*n^15 + (18213412351/1255367393280000)*n^14 + (38516770459/313841848320000)*n^13 + (9185104716379/10545086103552000)*n^12 + (1753572682469/337983528960000)*n^11 + (42653443424521/1647669703680000)*n^10 + (118327836601829/1098446469120000)*n^9 + (1768182454793/4763670912000)*n^8 + (698418986666497/666913927680000)*n^7 + (26428459959973901/11087444047680000)*n^6 + (31671555902461499/7391629365120000)*n^5 + (14625059352544909/2463876455040000)*n^4 + (438413487383/71292721500)*n^3 + (10755031442327/2248776129600)*n^2 + (2550558151/1338557220)*n + 1