A224195 Ordered sequence of numbers of form (2^n - 1)*2^m + 1 where n >= 1, m >= 1.
3, 5, 7, 9, 13, 15, 17, 25, 29, 31, 33, 49, 57, 61, 63, 65, 97, 113, 121, 125, 127, 129, 193, 225, 241, 249, 253, 255, 257, 385, 449, 481, 497, 505, 509, 511, 513, 769, 897, 961, 993, 1009, 1017, 1021, 1023, 1025, 1537, 1793, 1921, 1985, 2017, 2033, 2041, 2045, 2047
Offset: 1
Examples
Using the lexicographic ordering of A057555 the sequence is: A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)... +1 | 2 4 8 16 32 64 128 256 512 1024 ... ----|----------------------------------------------------------------- 1 | 3 5 9 17 33 65 129 257 513 1025 3 | 7 13 25 49 97 193 385 769 1537 3073 7 | 15 29 57 113 225 449 897 1793 3585 7169 15 | 31 61 121 241 481 961 1921 3841 7681 15361 31 | 63 125 249 497 993 1985 3969 7937 15873 31745 63 | 127 253 505 1009 2017 4033 8065 16129 32257 64513 127 | 255 509 1017 2033 4065 8129 16257 32513 65025 130049 255 | 511 1021 2041 4081 8161 16321 32641 65281 130561 261121 511 | 1023 2045 4089 8177 16353 32705 65409 130817 261633 523265 1023| 2047 4093 8185 16369 32737 65473 130945 261889 523777 1047553 ...
Links
- Brad Clardy, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
//program generates values in a table form for i:=1 to 10 do m:=2^i - 1; m,[ m*2^n +1 : n in [1..10]]; end for; //program generates sequence in lexicographic ordering of A057555, read //along antidiagonals from top. Primes in the sequence are marked with *. for i:=2 to 18 do for j:=1 to i-1 do m:=2^j -1; k:=m*2^(i-j) + 1; if IsPrime(k) then k,"*"; else k; end if;; end for; end for;
-
Mathematica
Table[(2^j-1)*2^(i-j+1) + 1, {i, 10}, {j, i}] (* Paolo Xausa, Apr 02 2024 *)
Formula
a(n) = (2^(A057555(2*n-1)) - 1)*2^(A057555(2*n)) + 1 for n>=1. [corrected by Jason Yuen, Feb 22 2025]
a(n) = A081118(n)+2; a(n)=(2^i-1)*2^j+1, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 04 2013
Comments