cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224198 Number of n X n 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

4, 160, 16060, 2411246, 451319098, 96914926654, 22835261226043, 5750097317505437, 1521786116504544601, 418628292901694453231, 118789461093773656747975, 34580941641153629118242103
Offset: 1

Views

Author

R. H. Hardin, Apr 01 2013

Keywords

Comments

Diagonal of A224204.

Examples

			Some solutions for n=3
..1..3..3....1..0..0....3..0..0....0..3..1....1..1..1....1..3..1....0..0..1
..3..3..1....1..0..0....1..1..1....3..2..1....3..1..0....3..2..0....3..2..1
..3..2..0....0..3..2....1..1..2....3..2..2....2..3..0....3..3..1....2..3..1
		

Crossrefs

Cf. A224204.

A224199 Number of nX3 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

50, 984, 16060, 263516, 4357084, 72105068, 1193130640, 19742052632, 326659600368, 5405039750704, 89433956076272, 1479810123371280, 24485531969701600, 405147434704078656, 6703731985610244736
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Column 3 of A224204

Examples

			Some solutions for n=3
..0..0..1....0..0..2....1..2..3....1..0..0....0..2..2....0..0..2....3..0..0
..0..1..3....2..3..0....2..3..0....3..3..2....3..2..2....3..2..2....2..0..0
..1..3..1....3..0..0....3..2..2....3..3..0....3..2..1....2..3..2....0..1..1
		

Formula

Empirical: a(n) = 20*a(n-1) -70*a(n-2) +228*a(n-3) -276*a(n-4) +392*a(n-5) -196*a(n-6) +144*a(n-7)

A224200 Number of nX4 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

130, 4580, 108625, 2411246, 54177872, 1229044416, 27957232796, 636184842092, 14476260508500, 329391607167600, 7494853316529036, 170534677669656388, 3880272541450452972, 88290059453259690888, 2008914306032132754800
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Column 4 of A224204

Examples

			Some solutions for n=3
..0..1..0..0....2..1..1..0....0..0..0..0....0..0..3..2....0..1..1..0
..1..2..0..0....1..2..1..1....0..0..0..2....3..3..3..0....3..3..3..0
..2..3..1..1....2..2..3..1....1..1..2..2....3..3..2..1....3..3..3..0
		

Formula

Empirical: a(n) = 35*a(n-1) -347*a(n-2) +1689*a(n-3) -2986*a(n-4) -2311*a(n-5) +23532*a(n-6) -23864*a(n-7) -36468*a(n-8) +100464*a(n-9) +94080*a(n-10) for n>12

A224201 Number of nX5 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

296, 17723, 586343, 16355242, 451319098, 12652618110, 357890479324, 10153767871028, 288290902851198, 8186391229197618, 232464667737624940, 6601126525130276106, 187446397143433832288, 5322740642815551322518
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Column 5 of A224204

Examples

			Some solutions for n=3
..0..0..0..1..1....1..0..0..0..0....0..0..0..1..3....1..1..2..1..0
..0..0..1..3..0....0..0..0..3..1....0..0..3..3..1....2..2..2..1..1
..2..3..3..2..1....1..2..3..3..0....2..3..3..2..0....2..2..3..3..0
		

Formula

Empirical: a(n) = 56*a(n-1) -1098*a(n-2) +10776*a(n-3) -59038*a(n-4) +197135*a(n-5) -527776*a(n-6) +1780117*a(n-7) -5020078*a(n-8) +3603978*a(n-9) -19091082*a(n-10) +61460622*a(n-11) +49090018*a(n-12) +274177128*a(n-13) +105163104*a(n-14) +354022404*a(n-15) +28705280*a(n-16) +147891456*a(n-17) -1275168*a(n-18) +15980544*a(n-19) for n>23

A224202 Number of nX6 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

610, 59792, 2734683, 93052770, 2981774784, 96914926654, 3202561268692, 106630751360602, 3558964686578544, 118857103988506092, 3969834734632962762, 132593577206338949766, 4428640833523450577612, 147916669230853276174408
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Column 6 of A224204

Examples

			Some solutions for n=3
..0..0..0..0..1..0....0..0..0..0..1..0....0..0..0..0..2..0....0..0..0..0..0..0
..0..0..0..1..1..0....0..0..0..2..0..0....0..0..0..2..1..1....0..0..0..2..2..1
..2..2..2..2..3..3....0..0..3..2..2..0....2..2..2..3..2..2....0..0..3..3..3..1
		

Formula

Empirical: a(n) = 84*a(n-1) -2771*a(n-2) +49004*a(n-3) -526214*a(n-4) +3641009*a(n-5) -16632719*a(n-6) +48536326*a(n-7) -53423733*a(n-8) -313959977*a(n-9) +1729942603*a(n-10) -7086418537*a(n-11) +13780962535*a(n-12) +5231265096*a(n-13) -20279410782*a(n-14) +609579098232*a(n-15) +294855159788*a(n-16) +2331852968592*a(n-17) +7276333185488*a(n-18) +4826951354776*a(n-19) +18771064269632*a(n-20) +25683656373760*a(n-21) +16941876341184*a(n-22) +25615354625280*a(n-23) +22113238049280*a(n-24) +5504163840000*a(n-25) for n>32

A224203 Number of nX7 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

1163, 180821, 11446096, 475218035, 17178450136, 618703866073, 22835261226043, 856178295327574, 32299825618280351, 1220504574023229563, 46124705848425800316, 1742806875797016046956, 65840694352751999751002
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Column 7 of A224204

Examples

			Some solutions for n=3
..0..0..0..0..0..1..1....0..0..0..0..0..1..0....0..0..0..0..2..0..0
..0..0..0..1..3..2..0....0..0..0..1..1..1..1....0..0..0..2..3..2..0
..0..0..1..3..3..3..1....0..0..2..3..3..3..3....0..2..2..3..3..2..2
		

Formula

Empirical recurrence of order 41 (see link above)

A224205 Number of 3Xn 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

64, 1600, 16060, 108625, 586343, 2734683, 11446096, 43787371, 154644169, 507763502, 1559390798, 4504599056, 12304311893, 31936080080, 79116405604, 187828358540, 428877669532, 944895859570, 2014476071694, 4166609485641
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 3 of A224204

Examples

			Some solutions for n=3
..0..1..2....2..3..0....0..2..1....2..2..1....0..2..0....1..0..0....3..1..0
..2..2..0....3..3..0....3..1..0....3..3..2....2..1..0....1..2..1....1..2..3
..2..2..1....3..3..2....2..3..1....3..2..1....1..2..1....2..3..2....2..3..2
		

Formula

Empirical: a(n) = (1/3629463552000)*n^18 + (1/44808192000)*n^17 + (10403/10461394944000)*n^16 + (10537/373621248000)*n^15 + (2917237/5230697472000)*n^14 + (6087761/747242496000)*n^13 + (5301533/57480192000)*n^12 + (3437329/4105728000)*n^11 + (464094467/73156608000)*n^10 + (442073521/10450944000)*n^9 + (211531872283/804722688000)*n^8 + (20899761511/14370048000)*n^7 + (120074702257/20756736000)*n^6 + (177621646127/13343616000)*n^5 + (1548685310923/72648576000)*n^4 + (22497639401/1297296000)*n^3 + (9654394423/1715313600)*n^2 + (19245361/1021020)*n - 20

A224206 Number of 4Xn 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

256, 16000, 263516, 2411246, 16355242, 93052770, 475218035, 2252100875, 10026501335, 42033573628, 165872759545, 616278459399, 2159074455116, 7151151269790, 22464417502819, 67161353094487, 191751351630146
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 4 of A224204

Examples

			Some solutions for n=3
..1..0..0....0..2..2....0..0..2....0..0..0....2..2..2....2..2..0....0..2..1
..3..2..1....3..2..1....3..2..0....3..2..1....2..2..0....3..0..0....3..3..0
..2..2..3....2..1..1....3..1..1....3..2..1....2..2..2....3..2..0....3..2..0
..3..3..3....1..2..3....3..3..3....2..2..3....2..2..2....2..2..3....2..2..1
		

Formula

Empirical: a(n) = (1/2906843957821440000)*n^24 + (11/242236996485120000)*n^23 + (4897/1529252690853888000)*n^22 + (2857/19308746096640000)*n^21 + (973909/198604245565440000)*n^20 + (93229/757205729280000)*n^19 + (266789/109442285568000)*n^18 + (104478641/2667655710720000)*n^17 + (1429093157/2738983403520000)*n^16 + (4913895191/836911595520000)*n^15 + (171672001139/3012881743872000)*n^14 + (29350223359/59779399680000)*n^13 + (433008014137969/110472330608640000)*n^12 + (76105242218503/2510734786560000)*n^11 + (344040677347481/1506440871936000)*n^10 + (4054053159749/2583060480000)*n^9 + (276889384664596819/32011868528640000)*n^8 + (4163175202299941/127031224320000)*n^7 + (2967972507533347/42533251891200)*n^6 + (338490515487987437/4223788208640000)*n^5 + (85995749191634941/527973526080000)*n^4 - (9502462212673/345080736000)*n^3 - (23527482078379273/74209612276800)*n^2 + (572648006969/535422888)*n - 1055 for n>2

A224207 Number of 5Xn 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

1024, 160000, 4357084, 54177872, 451319098, 2981774784, 17178450136, 91585310015, 466549088803, 2294426837986, 10864811370660, 49206477503159, 211954893113813, 865842155983471, 3352909875833504, 12323194613924281
Offset: 1

Views

Author

R. H. Hardin Apr 01 2013

Keywords

Comments

Row 5 of A224204

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..2....2..2..0....2..2..0....2..0..0....2..2..1....0..2..0....0..0..2
..1..2..0....2..0..0....3..3..0....3..3..3....2..2..0....2..2..2....0..2..1
..3..2..0....0..0..0....3..1..0....3..3..0....3..2..0....2..2..1....3..2..1
..2..0..0....3..3..3....2..1..1....3..0..0....3..2..0....3..3..2....2..2..2
		

Formula

Empirical polynomial of degree 30 (see link above)

A224208 Number of 6 X n 0..3 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

4096, 1600000, 72105068, 1229044416, 12652618110, 96914926654, 618703866073, 3548209715979, 19271137728483, 102347986047920, 537384393939360, 2776104877172612, 13950578706978266, 67469676772365413, 311817626166418846
Offset: 1

Views

Author

R. H. Hardin, Apr 01 2013

Keywords

Comments

Row 6 of A224204.

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..2....0..0..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..2..2....0..2..0....2..2..2....2..2..1....0..0..1....2..2..1....2..2..1
..2..3..2....2..3..0....2..3..0....3..3..1....0..2..1....2..2..2....2..2..1
..3..2..0....3..2..2....3..0..0....3..1..1....2..2..2....3..3..3....2..2..2
..3..2..0....2..3..1....3..0..0....1..3..1....3..2..1....3..3..1....2..3..2
		

Crossrefs

Cf. A224204.

Formula

Empirical polynomial of degree 36 (see link above).
Showing 1-10 of 11 results. Next