A224220 a(n) = smallest number k with property that if the base-n expansion of k is reversed, the result is a nontrivial multiple of k.
32, 75, 8, 245, 12, 21, 16, 1089, 15, 1859, 21, 39, 28, 4335, 24, 6137, 24, 57, 40, 11109, 33, 115, 39, 45, 52, 22707, 35, 27869, 40, 93, 64, 55, 51, 47915, 57, 111, 76, 65559, 48, 75809, 56, 129, 88, 99405, 69, 329, 60, 119, 65, 143259, 72, 265, 63, 95, 112, 198417, 87, 219539
Offset: 3
Examples
The numbers a(n) for n = 3, ..., 11 written in base n are 1012, 1023, 13, 1045, 15, 25, 17, 1089, 14. For example, 1012 (base 3) = 32 (base 10), and 2101 (base 3) = 64 (base 10) = 2*32.
References
- N. J. A. Sloane, paper in preparation.
- See A214927 for further references and links.
Links
- Michel Marcus, Table of n, a(n) for n = 3..400
- T. J. Kaczynski, Note on a Problem of Alan Sutcliffe, Math. Mag., 41 (1968), 84-86.
- Lara Pudwell, Digit Reversal Without Apology, Mathematics Magazine, Vol. 80 (2007), pp. 129-132. Also arXiv:math/0511366 [math.HO], 2005.
- Alan Sutcliffe, Integers That Are Multiplied When Their Digits Are Reversed, Mathematics Magazine, 39 (1966), 282-287.
Programs
-
Mathematica
Table[k = 2; While[Nand[IntegerQ@ #, # != 1] &[FromDigits[#, n]/k] &@ Reverse@ IntegerDigits[k, n], k++]; k, {n, 3, 60}] (* Michael De Vlieger, Feb 26 2017 *)
-
PARI
isok(k, n) = {my(rk = fromdigits(Vecrev(digits(k, n)), n)); !(rk % k) && (rk > k);} a(n) = {my(k = 1); while (!isok(k, n), k++); k;} \\ Michel Marcus, Feb 26 2017
Formula
If n=3 or n>3 and n+1 is prime, a(n) = (n^2-1)(n+1) (cf. A152619).
Comments