cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224242 Numbers k such that k^2 XOR (k+1)^2 is a square, and k^2 XOR (k-1)^2 is a square, where XOR is the bitwise logical XOR operator.

Original entry on oeis.org

0, 4, 24, 44, 112, 480, 1984, 8064, 32512, 130560, 263160, 278828, 340028, 523264, 2095104, 8384512, 25239472, 32490836, 33546240, 134201344, 536838144, 2147418112
Offset: 1

Views

Author

Alex Ratushnyak, Apr 01 2013

Keywords

Comments

A subsequence of A221643: k's such that A221643(k) = A221643(k-1) + 1.
A059153 is a subsequence. Terms that are not in A059153: 0, 44, 263160, 278828, 340028, 25239472, 32490836. Conjecture: the subsequence of non-A059153 terms is infinite.

Crossrefs

Programs

  • C
    #include 
    #include 
    int main() {
      unsigned long long a, i, t;
      for (i=0; i < (1L<<32)-1; ++i) {
          a = (i*i) ^ ((i+1)*(i+1));
          t = sqrt(a);
          if (a != t*t) continue;
          a = (i*i) ^ ((i-1)*(i-1));
          t = sqrt(a);
          if (a != t*t) continue;
          printf("%llu, ", i);
      }
      return 0;
    }
  • Mathematica
    Select[Range[0,84*10^5],AllTrue[{Sqrt[BitXor[#^2,(#+1)^2]],Sqrt[BitXor[#^2,(#-1)^2] ]},IntegerQ]&] (* The program generates the first 16 terms of the sequence. *) (* Harvey P. Dale, Nov 10 2022 *)