A224242 Numbers k such that k^2 XOR (k+1)^2 is a square, and k^2 XOR (k-1)^2 is a square, where XOR is the bitwise logical XOR operator.
0, 4, 24, 44, 112, 480, 1984, 8064, 32512, 130560, 263160, 278828, 340028, 523264, 2095104, 8384512, 25239472, 32490836, 33546240, 134201344, 536838144, 2147418112
Offset: 1
Programs
-
C
#include
#include int main() { unsigned long long a, i, t; for (i=0; i < (1L<<32)-1; ++i) { a = (i*i) ^ ((i+1)*(i+1)); t = sqrt(a); if (a != t*t) continue; a = (i*i) ^ ((i-1)*(i-1)); t = sqrt(a); if (a != t*t) continue; printf("%llu, ", i); } return 0; } -
Mathematica
Select[Range[0,84*10^5],AllTrue[{Sqrt[BitXor[#^2,(#+1)^2]],Sqrt[BitXor[#^2,(#-1)^2] ]},IntegerQ]&] (* The program generates the first 16 terms of the sequence. *) (* Harvey P. Dale, Nov 10 2022 *)
Comments