A224252 Nonpalindromic n such that the factorizations of n and its digital reverse differ only for the exponents order.
277816, 618772, 14339143, 34193341, 1125355221, 1225535211, 2613391326, 6231933162, 26157457326, 62375475162, 100504263021, 102407325111, 111523704201, 120362405001, 144326261443, 275603902756, 277816277816, 344162623441, 392739273927, 392875758639
Offset: 1
Examples
277816 and its reverse 618772 are in the sequence since 277816 = 2^3*7*11^2*41 and 618772 = 2^2*7^3*11*41 have the same prime divisors and the same exponents (1,1,2,3).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..34 (terms < 2*10^12)
Programs
-
Mathematica
Do[fn = FactorInteger@n; fr = FactorInteger@ FromDigits@ Reverse@ IntegerDigits@n; If[fn != fr && First /@ fn == First /@ fr && Sort[Last /@ fn] == Sort[Last /@ fr], Print[n]], {n, 15*10^6}]
-
Python
from sympy import primefactors, factorint A224252 = [n for n in range(1,10**6) if n != int(str(n)[::-1]) and primefactors(n) == primefactors(int(str(n)[::-1])) and sorted(factorint(n).values()) == sorted(factorint(int(str(n)[::-1])).values())] # Chai Wah Wu, Aug 21 2014
Comments