A224258 Number of n X 4 0..2 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
46, 548, 3096, 12467, 41012, 116692, 296646, 688533, 1482310, 2995516, 5735542, 10482777, 18398930, 31165238, 51155680, 81650727, 127097568, 193423162, 288406876, 422119879, 607438872, 860642144, 1202096354, 1657042849, 2256492738, 3038240352, 4048005130, 5340712381
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..2..0....0..0..1..2....0..0..0..0....0..0..0..0....0..1..1..0 ..0..0..2..0....0..0..1..2....1..1..2..1....0..1..1..0....0..2..2..1 ..0..2..2..1....0..0..2..2....1..2..2..2....1..2..2..2....1..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A224262.
Formula
Empirical: a(n) = (41/4032)*n^8 + (9/112)*n^7 + (349/480)*n^6 + (69/20)*n^5 + (1325/192)*n^4 + (1571/48)*n^3 + (87503/5040)*n^2 - (21949/420)*n + 43 for n>2.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(46 + 134*x - 180*x^2 + 467*x^3 + 29*x^4 - 416*x^5 + 534*x^6 - 255*x^7 + 61*x^8 - 12*x^9 + 2*x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025