cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A224262 T(n,k) = number of n X k 0..2 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

3, 9, 6, 22, 36, 10, 46, 158, 100, 15, 86, 548, 648, 225, 21, 148, 1600, 3096, 2017, 441, 28, 239, 4102, 12032, 12467, 5246, 784, 36, 367, 9503, 40182, 59855, 41012, 11990, 1296, 45, 541, 20299, 119367, 240829, 238366, 116692, 24842, 2025, 55, 771, 40570
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2013

Keywords

Examples

			Table starts:
   3    9     22      46       86       148        239         367          541
   6   36    158     548     1600      4102       9503       20299        40570
  10  100    648    3096    12032     40182     119367      322885       808618
  15  225   2017   12467    59855    240829     850875     2717731      8000608
  21  441   5246   41012   238366   1122522    4542734    16423026     54399996
  28  784  11990  116692   816361   4480391   20568693    82733667    301228048
  36 1296  24842  296646  2485967  15921905   83124099   371699763   1478187738
  45 2025  47643  688533  6868203  51343083  306179180  1530419762   6671184875
  55 3025  85838 1482310 17467782 152072846 1038489172  5835731860  28072690614
  66 4356 146878 2995516 41364960 417672794 3266157979 20709405119 110622071553
  ...
Some solutions for n=3 k=4:
..1..1..0..0....1..1..1..1....1..1..2..1....0..2..1..0....0..0..0..0
..2..1..1..0....1..2..2..1....2..2..2..1....0..2..1..1....0..0..2..0
..2..2..1..1....2..2..2..1....2..2..2..2....0..2..2..1....0..0..2..2
		

Crossrefs

Main diagonal is A224256.
Columns 1..7 are A000217(n+1), A000537(n+1), A224257, A224258, A224259, A224260, A224261.
Cf. A223838.

Formula

Empirical: columns k=1..7 are polynomials of order 2*k for n>0,0,0,2,4,6,8.
Empirical: rows n=1..7 are polynomials of degree 4*n for k>0,0,0,2,4,6,8.

Extensions

Name corrected by Andrew Howroyd, Mar 18 2025
Showing 1-1 of 1 results.