A224265 Number of 5 X n 0..2 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
21, 441, 5246, 41012, 238366, 1122522, 4542734, 16423026, 54399996, 167906334, 488545330, 1351296894, 3575548984, 9095336020, 22330458551, 53087335395, 122539314344, 275260139864, 602890604743, 1289688693983, 2698414556120, 5529127445368, 11107359382330
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....0..0..1....0..1..2....0..0..0....0..1..0....1..0..0....0..1..0 ..0..0..0....0..1..1....0..1..2....0..0..0....0..1..0....1..1..0....0..1..0 ..0..1..2....0..1..1....0..1..2....0..0..1....0..1..0....1..1..0....1..1..1 ..0..2..2....0..2..1....1..1..2....1..1..1....0..1..0....1..2..0....1..2..1 ..2..2..2....2..2..1....1..1..2....1..2..2....1..1..2....2..2..1....2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 5 of A224262.
Formula
Empirical: a(n) = (1/1379196149760000)*n^20 - (1/137919614976000)*n^19 + (293/304874938368000)*n^18 + (1/4619317248000)*n^17 + (157/352235520000)*n^16 + (8317/2092278988800)*n^15 + (2780521/20922789888000)*n^14 + (383809/213497856000)*n^13 + (203282759/6897623040000)*n^12 + (34268483/229920768000)*n^11 + (1734251209/357654528000)*n^10 + (5309275061/1609445376000)*n^9 + (4327647950569/17435658240000)*n^8 + (321770123/1257984000)*n^7 + (506327783081/101896704000)*n^6 - (990071393771/62270208000)*n^5 + (554590430608603/18525386880000)*n^4 - (8854141496479/77189112000)*n^3 + (188734999923373/97772875200)*n^2 - (257473009033/29099070)*n + 13615 for n>4.
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025