A224266 Number of 6 X n 0..2 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
28, 784, 11990, 116692, 816361, 4480391, 20568693, 82733667, 301228048, 1015242774, 3216158234, 9677475342, 27865037554, 77192516888, 206580752375, 535811566173, 1350500930653, 3315175437671, 7940967421582, 18591190564502, 42601309065441, 95664964823719, 210745412046812
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....0..0..0....0..0..0....0..1..1....0..0..0....0..0..0....0..0..0 ..0..0..0....0..0..0....0..0..0....0..1..1....0..0..0....1..1..0....0..1..1 ..0..0..1....1..2..0....1..0..0....0..2..1....0..1..1....1..1..0....1..1..2 ..0..0..1....1..2..2....2..0..0....1..2..2....0..1..1....1..1..0....1..1..2 ..0..0..2....2..2..2....2..1..0....2..2..2....1..2..1....2..2..0....1..2..2 ..0..2..2....2..2..2....2..1..1....2..2..2....2..2..2....2..2..0....1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..204
Crossrefs
Row 6 of A224262.
Formula
Empirical: a(n) = (1/35608838483312640000)*n^24 - (1/989134402314240000)*n^23 + (601/8515157028618240000)*n^22 - (547/425757851430912000)*n^21 + (13921/270322445352960000)*n^20 - (200479/608225502044160000)*n^19 + (115963/6590678814720000)*n^18 + (117617/1244905998336000)*n^17 + (252537361/52725430517760000)*n^16 + (879308299/13181357629440000)*n^15 + (134826737/114124308480000)*n^14 - (85421863/37661021798400)*n^13 + (32134877807171/52725430517760000)*n^12 - (2871377051923/488198430720000)*n^11 + (1288837369490701/13181357629440000)*n^10 - (184837585191797/329533940736000)*n^9 + (23642024191142869/5335311421440000)*n^8 - (12049177715869673/1000370891520000)*n^7 + (510702403798050053/44349776190720000)*n^6 + (72547792289651647/739162936512000)*n^5 - (132132690434377993/149325845760000)*n^4 + (83209134313815637/41064607584000)*n^3 + (10053832694553481/264561897600)*n^2 - (1502154800678423/5354228880)*n + 570714 for n>6.
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025