cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224276 Number of nX3 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

50, 984, 13683, 186516, 2596992, 37128051, 537465766, 7804602744, 113382138975, 1646661944858, 23908590491858, 347099092628781, 5038892410726190, 73149786094975076, 1061918636087967819, 15415943271255819642
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Column 3 of A224281

Examples

			Some solutions for n=3
..1..3..2....0..0..2....3..1..1....3..2..1....1..2..0....0..2..1....0..0..0
..3..3..0....1..3..0....3..1..0....3..3..1....2..0..0....2..1..1....1..2..0
..3..3..0....3..2..1....2..1..0....3..1..0....2..2..0....2..3..1....2..2..3
		

Formula

Empirical: a(n) = 20*a(n-1) -70*a(n-2) -211*a(n-3) +192*a(n-4) +15174*a(n-5) -36608*a(n-6) -83340*a(n-7) +59774*a(n-8) +2310958*a(n-9) -3620776*a(n-10) -5846720*a(n-11) +390652*a(n-12) +87932540*a(n-13) -70516876*a(n-14) +46329332*a(n-15) +7472696*a(n-16) -557612816*a(n-17) +319521288*a(n-18) -63018416*a(n-19) +17463360*a(n-20) +1046997696*a(n-21) -323677440*a(n-22) -14515200*a(n-23) -56540160*a(n-24) -635904000*a(n-25) for n>26

A224277 Number of nX4 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

130, 4580, 84132, 1334973, 21348990, 356222482, 6172817040, 109166159263, 1947747629183, 34864494529806, 624634228911233, 11192898789327524, 200562963738597382, 3593689853465024489, 64389966977277732381
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Column 4 of A224281

Examples

			Some solutions for n=3
..0..0..1..2....1..1..2..1....3..1..1..1....0..0..0..0....1..2..2..1
..1..1..2..1....1..2..3..3....3..1..1..1....1..1..2..2....2..3..2..1
..1..2..1..0....3..3..3..0....2..1..1..1....2..2..2..1....3..3..3..0
		

Formula

Empirical recurrence of order 52 (see link above)

A224278 Number of nX5 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

296, 17723, 442089, 8073038, 137489538, 2425304290, 45275725025, 883012703273, 17667432461262, 358042017265316, 7298750316970616, 149179000331610043, 3052840234754205390, 62514535525552969948, 1280625241031012026560
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Column 5 of A224281

Examples

			Some solutions for n=3
..0..0..0..0..1....0..0..0..1..3....0..0..0..1..0....1..1..2..2..1
..0..0..2..1..0....0..2..3..3..0....0..0..2..1..1....1..2..2..3..1
..3..3..3..3..0....3..3..3..3..3....2..3..3..3..3....2..2..3..2..2
		

A224279 Number of nX6 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

610, 59792, 2059793, 44901359, 817075668, 14587480744, 274116529912, 5481124776302, 115036474923900, 2489043013161042, 54774515108860284, 1216015762754882736, 27117272628943751854, 606168132402047719588
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Column 6 of A224281

Examples

			Some solutions for n=3
..0..0..0..1..1..1....0..0..0..0..3..0....0..0..0..0..1..0....0..0..0..0..1..0
..0..0..1..2..1..0....0..0..0..3..3..0....0..0..0..2..2..0....0..0..0..2..0..0
..0..3..3..3..2..1....0..3..3..3..2..2....0..2..3..2..1..1....0..0..3..3..1..1
		

A224280 Number of nX7 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

1163, 180821, 8626382, 233090092, 4728056658, 86539248276, 1597855917875, 31198793873704, 648539832987579, 14190379537730766, 321738654013526452, 7458658599338643026, 175162125039011466648, 4143668812111247607851
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Column 7 of A224281

Examples

			Some solutions for n=3
..0..0..0..0..1..0..0....0..0..0..0..2..1..1....0..0..0..0..1..1..2
..0..0..0..1..1..2..3....0..0..0..2..1..1..1....0..0..0..3..2..2..0
..0..0..2..2..3..3..2....0..0..2..3..2..1..0....0..0..3..3..3..2..0
		

A224282 Number of 3Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

64, 1600, 13683, 84132, 442089, 2059793, 8626382, 32788075, 114177368, 367630559, 1103854119, 3114501259, 8312578140, 21108455323, 51251494995, 119493052710, 268514504126, 583406544627, 1229033304669, 2516545359868, 5019124209561
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Row 3 of A224281

Examples

			Some solutions for n=3
..0..0..0....2..3..1....0..3..1....1..0..0....0..3..0....0..0..0....0..0..0
..2..0..0....3..1..0....3..2..1....3..3..2....3..2..1....1..1..2....0..3..2
..0..0..2....2..2..1....2..1..1....3..2..0....3..3..3....3..2..2....3..3..0
		

Formula

Empirical: a(n) = (1/3629463552000)*n^18 + (1/80654745600)*n^17 + (1123/2092278988800)*n^16 + (37607/2615348736000)*n^15 + (1660537/5230697472000)*n^14 + (58097/11496038400)*n^13 + (870097/11496038400)*n^12 + (18766109/28740096000)*n^11 + (404719067/73156608000)*n^10 + (535345591/14631321600)*n^9 + (24473380931/160944537600)*n^8 + (549661909/449064000)*n^7 + (1232106541/768768000)*n^6 + (74468938879/3736212480)*n^5 + (59979142753/8717829120)*n^4 + (521837272841/9081072000)*n^3 + (1774626948209/5145940800)*n^2 - (140683661/117810)*n + 1114 for n>3

A224283 Number of 4Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

256, 16000, 186516, 1334973, 8073038, 44901359, 233090092, 1121852243, 4979825221, 20391024279, 77331512406, 273217833082, 905042600151, 2828381836611, 8387049692461, 23720147714267, 64273739402314
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Row 4 of A224281

Examples

			Some solutions for n=3
..0..0..0....0..0..2....3..2..1....2..0..0....3..0..0....1..2..1....2..0..0
..0..0..1....2..2..2....3..2..1....3..2..0....1..3..2....3..2..1....1..1..0
..2..1..0....2..2..2....3..1..1....2..0..0....3..3..1....3..1..1....1..1..1
..1..0..0....3..2..2....1..2..1....2..1..0....3..3..0....1..3..1....1..2..1
		

Formula

Empirical: a(n) = (1/2906843957821440000)*n^24 + (1/80745665495040000)*n^23 + (46391/53523844179886080000)*n^22 + (11257/405483668029440000)*n^21 + (1330123/1390229718958080000)*n^20 + (8502743/347557429739520000)*n^19 + (35671/59779399680000)*n^18 + (133834769/10670622842880000)*n^17 + (7571063047/30128817438720000)*n^16 + (2965237343/836911595520000)*n^15 + (328422846067/15064408719360000)*n^14 + (22514281381/48910417920000)*n^13 + (7036550185081/2254537359360000)*n^12 - (105103493973601/2510734786560000)*n^11 + (1257210817095943/1076029194240000)*n^10 - (236735071681049/19615115520000)*n^9 + (3534310707922188979/32011868528640000)*n^8 - (767055210116438233/1143281018880000)*n^7 + (10350657608308971137/3103191336960000)*n^6 - (8154723578394294443/703964701440000)*n^5 + (16475873524529520931/527973526080000)*n^4 - (482012437494247/8888443200)*n^3 + (78892730856408401/873054262080)*n^2 - (77283877096589/243374040)*n + 643573 for n>7

A224284 Number of 5Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

1024, 160000, 2596992, 21348990, 137489538, 817075668, 4728056658, 26524273813, 141437578159, 706256665798, 3280530467805, 14165878265784, 57028400060821, 214999615263699, 762959963267749, 2561695629991349, 8178284227377456
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Row 5 of A224281

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..2..0..0....0..0..2....0..2..0....1..0..0....1..2..0....1..2..1....2..0..0
..0..0..0....2..2..2....3..3..2....3..3..0....3..3..3....2..2..1....1..1..0
..3..0..0....2..2..0....3..2..1....3..1..0....3..3..1....2..2..3....1..1..0
..1..3..2....2..3..0....3..1..0....1..1..1....3..2..0....3..3..3....1..1..2
		

Formula

Empirical polynomial of degree 30 (see link above)

A224285 Number of 6Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

4096, 1600000, 37128051, 356222482, 2425304290, 14587480744, 86539248276, 519675953580, 3101250505830, 17906548084860, 98091759991859, 504379639489778, 2424565118584031, 10897029351109181, 45902682124075154
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Row 6 of A224281

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..2..0..0....0..0..3....0..0..1....0..0..0....1..2..1....0..0..0....2..2..1
..1..2..1....2..3..2....0..3..1....2..2..0....2..1..1....3..1..1....3..3..1
..2..1..1....3..2..0....3..1..0....3..2..1....3..1..0....1..1..1....3..2..0
..2..2..3....2..3..1....3..3..3....2..1..0....3..2..1....3..3..0....2..2..2
		

Formula

Empirical polynomial of degree 36 (see link above)

A224286 Number of 7Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

16384, 16000000, 537465766, 6172817040, 45275725025, 274116529912, 1597855917875, 9622753439382, 59980603070388, 376494813177039, 2313407919278369, 13634051825496929, 76116429236458083, 400003671053134168
Offset: 1

Views

Author

R. H. Hardin Apr 02 2013

Keywords

Comments

Row 7 of A224281

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..0..2..0....2..2..2....3..0..0....0..0..0....0..0..0....3..2..2....3..2..0
..2..2..2....3..2..2....3..2..0....1..2..0....0..1..0....2..2..0....3..0..0
..2..2..2....3..2..2....3..2..2....2..1..0....1..0..0....2..3..2....3..1..0
..3..3..2....2..2..2....3..2..1....1..2..1....3..3..1....3..3..0....2..3..0
		
Showing 1-10 of 11 results. Next