A224283 Number of 4Xn 0..3 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
256, 16000, 186516, 1334973, 8073038, 44901359, 233090092, 1121852243, 4979825221, 20391024279, 77331512406, 273217833082, 905042600151, 2828381836611, 8387049692461, 23720147714267, 64273739402314
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..2....3..2..1....2..0..0....3..0..0....1..2..1....2..0..0 ..0..0..1....2..2..2....3..2..1....3..2..0....1..3..2....3..2..1....1..1..0 ..2..1..0....2..2..2....3..1..1....2..0..0....3..3..1....3..1..1....1..1..1 ..1..0..0....3..2..2....1..2..1....2..1..0....3..3..0....1..3..1....1..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/2906843957821440000)*n^24 + (1/80745665495040000)*n^23 + (46391/53523844179886080000)*n^22 + (11257/405483668029440000)*n^21 + (1330123/1390229718958080000)*n^20 + (8502743/347557429739520000)*n^19 + (35671/59779399680000)*n^18 + (133834769/10670622842880000)*n^17 + (7571063047/30128817438720000)*n^16 + (2965237343/836911595520000)*n^15 + (328422846067/15064408719360000)*n^14 + (22514281381/48910417920000)*n^13 + (7036550185081/2254537359360000)*n^12 - (105103493973601/2510734786560000)*n^11 + (1257210817095943/1076029194240000)*n^10 - (236735071681049/19615115520000)*n^9 + (3534310707922188979/32011868528640000)*n^8 - (767055210116438233/1143281018880000)*n^7 + (10350657608308971137/3103191336960000)*n^6 - (8154723578394294443/703964701440000)*n^5 + (16475873524529520931/527973526080000)*n^4 - (482012437494247/8888443200)*n^3 + (78892730856408401/873054262080)*n^2 - (77283877096589/243374040)*n + 643573 for n>7
Comments