A224289 Number of permutations of length n containing exactly 1 occurrence of 123 and 2 occurrences of 132.
0, 0, 0, 2, 8, 26, 79, 232, 664, 1856, 5072, 13568, 35584, 91648, 232192, 579584, 1427456, 3473408, 8359936, 19922944, 47054848, 110231552, 256311296, 591921152, 1358430208, 3099590656, 7034896384, 15888023552, 35718692864, 79960211456, 178291474432, 396076515328, 876844417024
Offset: 1
Links
- B. Nakamura, Approaches for enumerating permutations with a prescribed number of occurrences of patterns, arXiv 1301.5080, 2013.
- Index entries for linear recurrences with constant coefficients, signature (8, -24, 32, -16).
Programs
-
Maple
# Programs can be obtained from author's personal website.
-
Mathematica
LinearRecurrence[{8,-24,32,-16},{0,0,0,2,8,26,79},40] (* Harvey P. Dale, Jun 23 2017 *)
Formula
a(n) = 2^(-8+n)*(-136+70*n-11*n^2+n^3) for n>3. G.f.: -x^4*(x^3-10*x^2+8*x-2) / (2*x-1)^4. - Colin Barker, Apr 14 2013