A224301 Sorted areas of primitive integer Heronian triangles.
6, 12, 12, 24, 30, 36, 36, 42, 60, 60, 60, 60, 66, 72, 84, 84, 84, 84, 90, 90, 114, 120, 120, 120, 126, 126, 126, 132, 156, 156, 168, 168, 168, 180, 180, 198, 204, 210, 210, 210, 210, 210, 210, 216, 234, 240, 252, 252, 252, 264, 264, 270, 288, 300, 300, 306
Offset: 1
Keywords
Examples
The smallest Heronian triangle is (3,4,5) as perimeter and area are integers. The first term of the sequence is thus the area of this triangle, which is 6.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- Michael Somos, Heronian Triangle Table
Programs
-
Mathematica
AMax=400; Do[ c=p/b; a1=Sqrt[b^2+c^2+2Sqrt[b^2c^2-4A^2]]; a2=Sqrt[b^2+c^2-2Sqrt[b^2c^2-4A^2]]; If[IntegerQ[a2]&&GCD[a2,b,c]==1&&a1>a2>=b,A//Sow(*{A,a2,b,c}//Sow*)]; If[IntegerQ[a1]&&GCD[a1,b,c]==1,A//Sow(*{A,a1,b,c}//Sow*)]; ,{A,6,AMax,6} ,{p,4A^2//Divisors//Select[#,EvenQ[#]&>=2A&]&//#/2+2A^2/#&//Select[#,IntegerQ]&} ,{b,p//Divisors//Select[#,#^2>=p&]&} ]//Reap//Last//Last {a1,a2,c}=.; (* Albert Lau, May 20 2016 *)
Extensions
Definition corrected by Giovanni Resta, Apr 03 2013
More terms from Giovanni Resta, Apr 03 2013
Comments