A293260 Number of adventitious quadrangles (convex, noncyclic, not kite) such that Pi/n is the largest number that divides all the angles.
0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 12, 0, 9, 0, 14, 0, 75, 0, 26, 0, 35, 0, 110, 0, 54, 0, 57, 0, 436
Offset: 1
Examples
a(8) = 1 because there is one quadrangle where all angles are divisible by 180/8 = 22.5 degrees. a=90, b=45, c=22.5, d=45, e=67.5, f=45, g=22.5, h=22.5. a(10) = 2 (180/10 = 18): 72 54 18 36 72 36 36 36 108 36 18 54 72 36 18 18 a(12) = 12 (180/12 = 18): 75 30 45 45 60 60 15 30 75 60 15 45 60 30 45 30 90 30 30 45 75 45 15 30 90 45 15 45 75 30 30 30 90 45 30 45 60 60 15 15 90 45 30 75 30 45 30 15 90 60 15 45 60 45 30 15 105 30 15 30 105 30 15 30 105 30 30 75 45 45 15 15 105 45 15 30 90 45 15 15 105 45 15 75 45 30 30 15 120 30 15 60 75 30 15 15
Links
- Kevin S. Brown's Mathpages, Adventitious Solutions
- Wikipedia, Langley’s Adventitious Angles
Programs
-
Mathematica
Remove[f]; f[n_Integer] := Do[ If[A == B < n/2 - C, Continue[]];(* if A == B then C >= H *) If[A == B == n/2 - C || C == D == n/2 - B, Continue[]];(* remove kite *) F = n/\[Pi] ArcTan[(Sin[d] Sin[a + b])/(Sin[a] Sin[c] Sin[e]) - Cot[e], 1] /. Thread[{a, b, c, d, e} -> \[Pi]/n {A, B, C, D, E}]; F = Round[F, 10^-6]; If[A < F, Continue[]]; If[GCD[A, B, C, D, E, F] != 1, Continue[]]; If[A == E && B < F, Continue[]];(* if A == E then B >= F *) If[A == F && B < E, Continue[]];(* if A == F then B >= E *) {A, B, C, D, E, F, B + C - F, D + E - A} // Sow; , {A, n/4 // Ceiling, n - 3} , {B, Max[1, n - 3 A + 2], Min[A, n - A - 2]}(* B <= A and C < A and H < A *) , {C, Max[1, n - 2 A - B + 1], Min[A - 1, n - A - B - 1]}(* C < A and H < A *) , {D, n - A - B - C, A - 1}(* D < A and E <= A *) , {E, {n - B - C - D}} ] // Reap // Last // If[# == {}, {}, # // Last] &; Table[f[n] // Length, {n, 30}] (* 180/n f[n] /. n -> 18 // TableForm *)
Comments