cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224310 T(n,k)=Number of nXk 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

3, 9, 9, 22, 54, 27, 46, 218, 324, 81, 86, 698, 1586, 1944, 243, 148, 1915, 5996, 11361, 11664, 729, 239, 4690, 20214, 45453, 82700, 69984, 2187, 367, 10511, 61953, 164514, 345875, 615481, 419904, 6561, 541, 21919, 174378, 562760, 1258372, 2717759
Offset: 1

Views

Author

R. H. Hardin Apr 03 2013

Keywords

Comments

Table starts
.....3........9.........22..........46..........86..........148..........239
.....9.......54........218.........698........1915.........4690........10511
....27......324.......1586........5996.......20214........61953.......174378
....81.....1944......11361.......45453......164514.......562760......1825800
...243....11664......82700......345875.....1258372......4420701.....15312504
...729....69984.....615481.....2717759.....9829605.....33934344....118317987
..2187...419904....4634768....22071219....80083648....268379906....911404794
..6561..2519424...35003328...182843194...677557164...2215451575...7236130163
.19683.15116544..264487714..1528645389..5882182248..19023816444..59751261572
.59049.90699264.1997888432.12825738594.51821072499.168305254414.512310103541

Examples

			Some solutions for n=3 k=4
..0..0..1..0....0..0..0..1....0..0..0..1....0..2..1..0....0..0..2..0
..1..2..1..0....0..1..1..0....0..0..1..0....2..1..1..0....2..2..2..0
..2..1..1..1....1..2..2..2....2..2..0..0....1..1..2..0....2..2..1..0
		

Crossrefs

Column 1 is A000244
Column 2 is 9*6^(n-1)
Row 1 is A223718
Row 2 is A223927

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 6*a(n-1)
k=3: [order 17]
k=4: [order 30] for n>35
k=5: [order 61] for n>69
k=6: [order 88] for n>98
Empirical: rows n=1..7 are polynomials of degree 4*n for k>0,0,3,6,9,12,15