A224326 Number of partitions of n into 3 distinct triangular numbers.
0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 1, 3, 2, 0, 2, 1, 1, 4, 1, 3, 1, 1, 2, 2, 2, 1, 4, 1, 1, 4, 1, 2, 4, 1, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 3, 2, 3, 4, 1, 2, 4, 2, 3, 3, 2, 1, 5, 2, 0, 5, 1, 4, 5, 2, 4, 2, 2
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Jon Maiga, Computer-generated formulas for A224326, Sequence Machine.
Crossrefs
Programs
-
Mathematica
nn = 150; tri = Table[n*(n + 1)/2, {n, 0, nn}]; t = Table[0, {tri[[-1]]}]; Do[s = tri[[i]] + tri[[j]] + tri[[k]]; If[s <= tri[[-1]], t[[s]]++], {i, nn}, {j, i + 1, nn}, {k, j + 1, nn}]; t = Join[{0}, t] (* T. D. Noe, Apr 05 2013 *)
-
Python
TOP = 777 for n in range(TOP): k = 0 for x in range(TOP): s = x*(x+1)//2 if s>n: break for y in range(x+1,TOP): sy = s + y*(y+1)//2 if sy>n: break for z in range(y+1,TOP): sz = sy + z*(z+1)//2 if sz>n: break if sz==n: k+=1 print(str(k), end=',')
Comments