A224332 Number of idempotent n X n 0..7 matrices of rank n-1.
1, 30, 381, 4092, 40955, 393210, 3670009, 33554424, 301989879, 2684354550, 23622320117, 206158430196, 1786706395123, 15393162788850, 131941395333105, 1125899906842608, 9570149208162287, 81064793292668910, 684547143360315373
Offset: 1
Examples
Some solutions for n=3: ..1..0..3....0..0..4....0..3..0....0..0..1....1..0..6....0..7..7....1..0..3 ..0..1..3....0..1..0....0..1..0....0..1..0....0..1..4....0..1..0....0..1..6 ..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (18,-97,144,-64).
Crossrefs
Cf. A224333.
Programs
-
Mathematica
Table[n*(2*8^(n-1)-1), {n, 1, 40}] (* Stefano Spezia, Aug 29 2018 *)
-
PARI
Vec(x*(1 + 12*x - 62*x^2) / ((1 - x)^2*(1 - 8*x)^2) + O(x^40)) \\ Colin Barker, Aug 29 2018
-
PARI
a(n) = n*(2*8^(n-1)-1); \\ Altug Alkan, Aug 31 2018
Formula
a(n) = n*(2*8^(n-1)-1).
a(n) = 18*a(n-1) - 97*a(n-2) + 144*a(n-3) - 64*a(n-4).
G.f.: x*(1 + 12*x - 62*x^2) / ((1 - x)^2*(1 - 8*x)^2). - Colin Barker, Aug 29 2018
Comments