cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224333 T(n,k)=Number of idempotent n X n 0..k matrices of rank n-1.

Original entry on oeis.org

1, 1, 6, 1, 10, 21, 1, 14, 51, 60, 1, 18, 93, 212, 155, 1, 22, 147, 508, 805, 378, 1, 26, 213, 996, 2555, 2910, 889, 1, 30, 291, 1724, 6245, 12282, 10199, 2040, 1, 34, 381, 2740, 12955, 37494, 57337, 34984, 4599, 1, 38, 483, 4092, 24005, 93306, 218743, 262136
Offset: 1

Views

Author

R. H. Hardin, formula via M. F. Hasler _William J. Keith_ and Rob Pratt in the Sequence Fans Mailing List, Apr 03 2013

Keywords

Comments

Table starts
.....1......1.......1........1.........1.........1..........1..........1
.....6.....10......14.......18........22........26.........30.........34
....21.....51......93......147.......213.......291........381........483
....60....212.....508......996......1724......2740.......4092.......5828
...155....805....2555.....6245.....12955.....24005......40955......65605
...378...2910...12282....37494.....93306....201678.....393210.....708582
...889..10199...57337...218743....653177...1647079....3670009....7440167
..2040..34984..262136..1249992...4478968..13176680...33554424...76527496
..4599.118089.1179639..7031241..30233079.103766409..301989879..774840969
.10230.393650.5242870.39062490.201553910.807072130.2684354550.7748409770

Examples

			Some solutions for n=3 k=4
..1..1..0....0..0..0....1..0..0....1..0..4....1..0..0....0..3..1....0..3..0
..0..0..0....3..1..0....0..0..2....0..1..1....0..1..0....0..1..0....0..1..0
..0..2..1....1..0..1....0..0..1....0..0..0....1..2..0....0..0..1....0..0..1
		

Crossrefs

Column 1 is A066524
Row 2 is A016825

Formula

T(n,k) = 2*n*(1+k)^(n-1)-n
For column k:
k=1: a(n) = 6*a(n-1) -13*a(n-2) +12*a(n-3) -4*a(n-4)
k=2: a(n) = 8*a(n-1) -22*a(n-2) +24*a(n-3) -9*a(n-4)
k=3: a(n) = 10*a(n-1) -33*a(n-2) +40*a(n-3) -16*a(n-4)
k=4: a(n) = 12*a(n-1) -46*a(n-2) +60*a(n-3) -25*a(n-4)
k=5: a(n) = 14*a(n-1) -61*a(n-2) +84*a(n-3) -36*a(n-4)
k=6: a(n) = 16*a(n-1) -78*a(n-2) +112*a(n-3) -49*a(n-4)
k=7: a(n) = 18*a(n-1) -97*a(n-2) +144*a(n-3) -64*a(n-4)
For row n:
n=1: a(n) = 1
n=2: a(n) = 4*n + 2
n=3: a(n) = 6*n^2 + 12*n + 3
n=4: a(n) = 8*n^3 + 24*n^2 + 24*n + 4
n=5: a(n) = 10*n^4 + 40*n^3 + 60*n^2 + 40*n + 5
n=6: a(n) = 12*n^5 + 60*n^4 + 120*n^3 + 120*n^2 + 60*n + 6
n=7: a(n) = 14*n^6 + 84*n^5 + 210*n^4 + 280*n^3 + 210*n^2 + 84*n + 7