A224333 T(n,k)=Number of idempotent n X n 0..k matrices of rank n-1.
1, 1, 6, 1, 10, 21, 1, 14, 51, 60, 1, 18, 93, 212, 155, 1, 22, 147, 508, 805, 378, 1, 26, 213, 996, 2555, 2910, 889, 1, 30, 291, 1724, 6245, 12282, 10199, 2040, 1, 34, 381, 2740, 12955, 37494, 57337, 34984, 4599, 1, 38, 483, 4092, 24005, 93306, 218743, 262136
Offset: 1
Examples
Some solutions for n=3 k=4 ..1..1..0....0..0..0....1..0..0....1..0..4....1..0..0....0..3..1....0..3..0 ..0..0..0....3..1..0....0..0..2....0..1..1....0..1..0....0..1..0....0..1..0 ..0..2..1....1..0..1....0..0..1....0..0..0....1..2..0....0..0..1....0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1000
Formula
T(n,k) = 2*n*(1+k)^(n-1)-n
For column k:
k=1: a(n) = 6*a(n-1) -13*a(n-2) +12*a(n-3) -4*a(n-4)
k=2: a(n) = 8*a(n-1) -22*a(n-2) +24*a(n-3) -9*a(n-4)
k=3: a(n) = 10*a(n-1) -33*a(n-2) +40*a(n-3) -16*a(n-4)
k=4: a(n) = 12*a(n-1) -46*a(n-2) +60*a(n-3) -25*a(n-4)
k=5: a(n) = 14*a(n-1) -61*a(n-2) +84*a(n-3) -36*a(n-4)
k=6: a(n) = 16*a(n-1) -78*a(n-2) +112*a(n-3) -49*a(n-4)
k=7: a(n) = 18*a(n-1) -97*a(n-2) +144*a(n-3) -64*a(n-4)
For row n:
n=1: a(n) = 1
n=2: a(n) = 4*n + 2
n=3: a(n) = 6*n^2 + 12*n + 3
n=4: a(n) = 8*n^3 + 24*n^2 + 24*n + 4
n=5: a(n) = 10*n^4 + 40*n^3 + 60*n^2 + 40*n + 5
n=6: a(n) = 12*n^5 + 60*n^4 + 120*n^3 + 120*n^2 + 60*n + 6
n=7: a(n) = 14*n^6 + 84*n^5 + 210*n^4 + 280*n^3 + 210*n^2 + 84*n + 7
Comments