A224334 Number of idempotent 3 X 3 0..n matrices of rank 2.
21, 51, 93, 147, 213, 291, 381, 483, 597, 723, 861, 1011, 1173, 1347, 1533, 1731, 1941, 2163, 2397, 2643, 2901, 3171, 3453, 3747, 4053, 4371, 4701, 5043, 5397, 5763, 6141, 6531, 6933, 7347, 7773, 8211, 8661, 9123, 9597, 10083, 10581, 11091, 11613, 12147
Offset: 1
Examples
Some solutions for n=3: ..1..2..0....1..0..0....1..0..0....1..0..1....1..0..2....0..0..0....0..0..0 ..0..0..0....1..0..2....0..1..0....0..1..3....0..1..2....3..1..0....1..1..0 ..0..1..1....0..0..1....0..0..0....0..0..0....0..0..0....1..0..1....2..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A224333.
Programs
-
PARI
a(n) = 6*n^2 + 12*n + 3 \\ Charles R Greathouse IV, Jun 17 2017
-
PARI
Vec(3*x*(7 - 4*x + x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Feb 23 2018
Formula
a(n) = 6*n^2 + 12*n + 3.
From Colin Barker, Feb 23 2018: (Start)
G.f.: 3*x*(7 - 4*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
Comments