A224335 Number of idempotent 4X4 0..n matrices of rank 3.
60, 212, 508, 996, 1724, 2740, 4092, 5828, 7996, 10644, 13820, 17572, 21948, 26996, 32764, 39300, 46652, 54868, 63996, 74084, 85180, 97332, 110588, 124996, 140604, 157460, 175612, 195108, 215996, 238324, 262140, 287492, 314428, 342996, 373244
Offset: 1
Examples
Some solutions for n=3 ..1..0..0..0....1..0..0..0....1..0..0..0....1..0..0..3....1..0..0..0 ..0..1..0..0....2..0..1..1....0..1..1..0....0..1..0..2....0..1..0..0 ..3..2..0..0....0..0..1..0....0..0..0..0....0..0..1..1....1..2..0..1 ..0..0..0..1....0..0..0..1....0..0..2..1....0..0..0..0....0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
PARI
Vec(-4*x*(x^3-5*x^2+7*x-15)/(x-1)^4 + O(x^100)) \\ Colin Barker, Sep 20 2014
Formula
a(n) = 8*n^3 + 24*n^2 + 24*n + 4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Colin Barker, Sep 20 2014
G.f.: -4*x*(x^3-5*x^2+7*x-15) / (x-1)^4. - Colin Barker, Sep 20 2014
Comments