cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227034 Composite numbers such that product_{i=1..k} (p_i/(p_i-1)) / sum_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of n (with multiplicity).

Original entry on oeis.org

4, 16, 72, 132, 256, 800, 1232, 2208, 2960, 5184, 5376, 11904, 19200, 23760, 39040, 41472, 65536, 72000, 76032, 76800, 84816, 203280, 259200, 288768, 332928, 345600, 373248, 383040, 416000, 614400, 628992, 640000, 663552, 691200, 1228800, 1996800, 2013312
Offset: 1

Views

Author

Paolo P. Lava, Jul 03 2013

Keywords

Comments

All terms are even numbers.

Examples

			Prime factors of 1232 are 2^4, 7, 11 and ((2/(2-1))^4*7/(7-1)*11/(11-1)) / (4*2/(2-1)+7/(7-1)+11/(11-1)) = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA226365:=proc(q) local a, d, n, p;
    for n from 2 to q do if not isprime(n) then p:=ifactors(n)[2];
    a:=mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p)/add((op(1,d)/(op(1,d)-1))*op(2,d),d=p);
    if type(a,integer) then print(n); fi; fi;
    od; end: ListA226365(10^10);

A227248 Composite numbers such that sum_{i=1..k} (p_i/(p_i+1))/product_{i=1..k} (p_i/(p_i+1)) is an integer, where p_i are the k prime factors of n (with multiplicity).

Original entry on oeis.org

4, 72, 102, 216, 260, 264, 270, 432, 462, 504, 612, 720, 1980, 2592, 3672, 5184, 5550, 8352, 10368, 15552, 20736, 22032, 25488, 29016, 30240, 31104, 36288, 38880, 41976, 46656, 49248, 57888, 62208, 93312, 103680, 132192, 186624, 238464, 286848, 373248, 410688
Offset: 1

Views

Author

Paolo P. Lava, Jul 04 2013

Keywords

Examples

			Prime factors of 270 are 2, 3^3, 5; therefore (2/(2+1)+3*3/(3+1)+5/(5+1))/(2/(2+1)*(3/(3+1))^3*5/(5+1)) = 16.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA227248:=proc(q) local a, d, n, p;
    for n from 2 to q do if not isprime(n) then p:=ifactors(n)[2];
    a:=add((op(1, d)/(op(1, d)+1))*op(2, d), d=p)/mul((op(1, d)/(op(1, d)+1))^op(2, d), d=p);
    if type(a, integer) then print(n); fi; fi;
    od; end: ListA227248(10^10);

A238922 Numbers n such that Sum_{i=1..j} 1/d(i) - Sum_{i=1..k} 1/p(i) is an integer, where p are the prime factors of n, counted with multiplicity, and d its divisors.

Original entry on oeis.org

1, 12, 18, 220, 396, 17296, 24016, 287532, 4661056, 64288512, 334144656, 358585488, 555192576, 568719616, 2172649216, 2451538112, 2645953344, 2955423888, 6704333824, 26996772032, 88734733632, 147861504000, 311063879024, 371226582848, 429391876096
Offset: 1

Views

Author

Paolo P. Lava, Mar 07 2014

Keywords

Comments

A212128 and A230164 are subsets of this sequence.
a(26) > 10^12. - Giovanni Resta, Mar 11 2014

Examples

			Divisors of 12 are 1, 2, 3, 4, 6, 12 and 1/1 + 1/2 + 1/3 +1/4 + 1/6 + 1/12 = 7/3. Prime factors of 12 are 2^2, 3 and 1/2 + 1/2 + 1/3 = 4/3. Finally 7/3 - 4/3 = 1 that is an integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do if not isprime(n) then b:=sigma(n)/n;
    a:=ifactors(n)[2]; c:=add(a[k][2]/a[k][1],k=1..nops(a));
    if type(b-c,integer) then lprint(n,b-c); fi; fi; od; end: P(10^6);

Extensions

a(9)-a(10), a(13)-a(17), a(19)-a(25) from Giovanni Resta, Mar 11 2014
Showing 1-3 of 3 results.