A224377 Number of 5Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.
243, 11664, 132236, 800309, 3607078, 13831334, 48166179, 158023549, 497580715, 1514359253, 4458436636, 12678906115, 34773215421, 91905020703, 234118674737, 575345712656, 1365918264285, 3137981575530, 6988511558308, 15115188591949
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..2..0....0..0..0....1..1..1....2..0..0....1..0..0....0..0..1....1..0..0 ..2..0..0....1..2..0....1..2..0....1..0..0....1..1..1....0..1..0....0..1..0 ..0..0..0....2..0..0....2..0..0....1..0..0....2..2..2....2..1..0....2..1..0 ..0..0..0....1..1..1....2..2..1....2..1..0....2..2..2....1..1..1....2..1..0 ..2..2..1....2..1..0....2..2..0....1..2..2....2..2..1....2..2..2....2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/1379196149760000)*n^20 + (1/12538146816000)*n^19 + (467/101624979456000)*n^18 + (223/1302884352000)*n^17 + (67777/14944849920000)*n^16 + (8993/99632332800)*n^15 + (29436877/20922789888000)*n^14 + (26572241/1494484992000)*n^13 + (439786693/2299207680000)*n^12 + (20411147/10948608000)*n^11 + (8076494051/459841536000)*n^10 + (1128125897/6967296000)*n^9 + (3054806701103/2179457280000)*n^8 + (547815604487/53374464000)*n^7 + (2418856630291/41513472000)*n^6 + (950711499611/4790016000)*n^5 + (286543564329947/1323241920000)*n^4 - (4310267256629/5513508000)*n^3 + (49217261945707/48886437600)*n^2 + (184937368403/116396280)*n - 3058 for n>3
Comments