cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224378 Number of 6Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

729, 69984, 1126072, 8297747, 42132769, 174854516, 644368221, 2212959866, 7296488462, 23473954511, 74124038709, 229565868000, 694675751863, 2045339262040, 5840640774160, 16145608364197, 43177424328109
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 6 of A224374

Examples

			Some solutions for n=3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..0..1..0....0..0..2....1..1..0....1..0..0....1..0..0....0..1..0....0..0..0
..2..2..0....0..2..0....1..0..0....0..2..1....2..2..2....2..2..0....2..1..0
..2..0..0....2..0..0....2..0..0....2..2..1....2..2..0....2..0..0....1..1..2
..2..1..1....1..0..0....0..2..2....2..2..1....2..2..0....1..0..0....1..2..0
..2..1..0....0..1..0....2..2..0....2..2..1....2..2..2....2..1..0....2..1..0
		

Formula

Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/228261785149440000)*n^23 + (2993/8515157028618240000)*n^22 + (1189/64508765368320000)*n^21 + (565139/810967336058880000)*n^20 + (50213/2502985605120000)*n^19 + (102275011/224083079700480000)*n^18 + (630450937/74694359900160000)*n^17 + (6860509793/52725430517760000)*n^16 + (7572768857/4393785876480000)*n^15 + (1975549547/96566722560000)*n^14 + (5979889787/26153487360000)*n^13 + (129750858133763/52725430517760000)*n^12 + (8852225741519/337983528960000)*n^11 + (1757155928198569/6590678814720000)*n^10 + (11208897154284701/4393785876480000)*n^9 + (15905213251807771/762187345920000)*n^8 + (60693804091491173/444609285120000)*n^7 + (56813409423945822743/88699552381440000)*n^6 + (45278410760324474101/29566517460480000)*n^5 - (4851359450955021973/4927752910080000)*n^4 - (59510428654061699/5133075948000)*n^3 + (926682017129053/38440617600)*n^2 + (89190882279703/5354228880)*n - 49724 for n>4