A224381 Table of coefficients in the expansion of product((1+d_i*x), d_i|n).
1, 1, 1, 1, 3, 2, 1, 4, 3, 1, 7, 14, 8, 1, 6, 5, 1, 12, 47, 72, 36, 1, 8, 7, 1, 15, 70, 120, 64, 1, 13, 39, 27, 1, 18, 97, 180, 100, 1, 12, 11, 1, 28, 287, 1400, 3444, 4032, 1728, 1, 14, 13, 1, 24, 163, 336, 196, 1, 24, 158, 360, 225, 1, 31, 310, 1240, 1984, 1024
Offset: 0
Examples
Row n = 6 : 1, 12, 47, 72, 36 because (1+x)*(1+2x)*(1+3x)*(1+6x) = 1 + 12*x + 47*x^2 + 72*x^3 + 36*x^4. Table begins : 1; 1, 1; 1, 3, 2; 1, 4, 3; 1, 7, 14, 8; 1, 6, 5; 1, 12, 47, 72, 36; 1, 8, 7; 1, 15, 70, 120, 64; 1, 13, 39, 27; 1, 18, 97, 180, 100; 1, 12, 11; 1, 28, 287, 1400, 3444, 4032, 1728; 1, 14, 13; 1, 24, 163, 336, 196; 1, 24, 158, 360, 225; 1, 31, 310, 1240, 1984, 1024; ...
Links
- Alois P. Heinz, Rows n = 0..1500, flattened
Crossrefs
Programs
-
Maple
with(numtheory): T:= proc(n) local p; p:= mul(1+d*x, d=divisors(n)); seq(coeff(p, x, k), k=0..degree(p)) end: seq(T(n), n=0..30); # Alois P. Heinz, Apr 05 2013
-
Mathematica
T[n_] := CoefficientList[Product[1+d*x, {d, Divisors[n]}], x]; T[0] = {1}; Array[T, 20, 0] // Flatten (* Jean-François Alcover, Mar 27 2017 *)
Formula
T(n,k) = [x^k] Product_{d|n} (1+d*x).