cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224386 Number of nX3 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

20, 400, 6094, 86701, 1268572, 18794636, 279128617, 4142692993, 61481903024, 912523782542, 13544525098266, 201041292342421, 2984053971336637, 44292278131103241, 657430060365000621, 9758232360460992934
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 3 of A224391

Examples

			Some solutions for n=3
..0..2..3....0..0..3....0..0..0....0..0..0....1..1..2....1..3..3....1..1..3
..0..3..3....0..2..2....3..3..3....1..1..2....0..3..3....1..2..2....1..1..1
..0..3..3....2..2..3....0..1..3....0..0..2....1..1..1....1..1..2....1..3..3
		

Formula

Empirical: a(n) = 20*a(n-1) -70*a(n-2) -211*a(n-3) +2453*a(n-4) -12192*a(n-5) +5907*a(n-6) +119292*a(n-7) -294992*a(n-8) +742820*a(n-9) +144828*a(n-10) -5072952*a(n-11) +6034728*a(n-12) -15994872*a(n-13) -858096*a(n-14) -10368*a(n-15)

A224387 Number of nX4 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

35, 1225, 27790, 497958, 8573507, 152271025, 2780848289, 51325449985, 949582166068, 17572045403455, 325249748226217, 6022221071267123, 111533443784218247, 2065901802649317374, 38268294526698715055
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 4 of A224391

Examples

			Some solutions for n=3
..2..2..3..3....1..1..3..3....0..0..1..3....0..0..0..3....2..2..3..3
..0..2..2..2....2..2..3..3....1..2..3..3....0..0..0..2....1..1..2..3
..1..1..2..2....0..1..2..2....2..2..2..2....0..0..1..1....0..1..1..3
		

Formula

Empirical recurrence of order 47 (see link above)

A224388 Number of nX5 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

56, 3136, 102232, 2332222, 45648753, 879830242, 17642791909, 365858453951, 7713944320142, 163629606236587, 3477919119488292, 73997041686359692, 1575770012461089025, 33581433844112168010, 716050604542387047024
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 5 of A224391

Examples

			Some solutions for n=3
..0..1..1..1..2....0..0..2..2..3....0..2..2..2..3....0..0..0..3..3
..0..1..1..1..1....1..1..3..3..3....0..2..2..3..3....1..1..1..1..1
..0..1..1..3..3....0..0..0..1..1....0..2..2..3..3....0..1..1..1..1
		

A224389 Number of nX6 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

84, 7056, 319769, 9331553, 211856287, 4364554008, 90682660877, 1970202629627, 44404431681110, 1020688669518185, 23669944875525397, 551060981056174321, 12857376512847673306, 300489121615902701612, 7032615140846782176382
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 6 of A224391

Examples

			Some solutions for n=3
..0..0..1..2..2..2....0..1..1..1..1..3....2..2..2..2..2..3....0..2..3..3..3..3
..0..2..3..3..3..3....0..0..1..3..3..3....2..2..3..3..3..3....2..2..2..2..2..3
..0..0..3..3..3..3....0..2..2..2..2..2....0..0..1..1..2..2....0..0..0..0..0..0
		

A224390 Number of nX7 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

120, 14400, 881519, 32806574, 882833522, 19879000458, 424124440444, 9276284077351, 212972822153405, 5078434646430668, 123731812099601647, 3047111408129189213, 75453561534676485695, 1874665689163421824860
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 7 of A224391

Examples

			Some solutions for n=3
..0..0..0..0..0..0..0....0..0..1..1..2..3..3....0..0..0..0..0..0..2
..0..0..0..1..2..3..3....0..2..2..2..2..2..2....0..0..2..2..2..2..3
..0..0..0..1..1..2..2....0..1..1..2..2..3..3....0..0..0..0..2..2..2
		

A224392 Number of 3 X n 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

64, 1000, 6094, 27790, 102232, 319769, 881519, 2196522, 5038720, 10788462, 21789398, 41858498, 76994510, 136338455, 233448747, 387963222, 627730762, 991506308, 1532314870, 2321602662, 3454306716, 5054988261, 7285189791
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2013

Keywords

Comments

Row 3 of A224391.

Examples

			Some solutions for n=3:
..0..1..1....0..1..1....1..1..2....0..0..1....0..1..1....1..1..3....0..2..2
..2..2..2....0..0..1....2..3..3....2..2..2....2..2..2....1..2..3....1..2..3
..0..2..2....0..0..0....1..1..2....1..3..3....0..0..1....1..3..3....0..3..3
		

Crossrefs

Cf. A224391.

Formula

Empirical: a(n) = (353/181440)*n^9 + (17/560)*n^8 + (9731/30240)*n^7 + (1283/720)*n^6 + (52457/8640)*n^5 + (776/45)*n^4 + (294499/11340)*n^3 + (28837/2520)*n^2 + (8207/126)*n - 18 for n>1.
Conjectures from Colin Barker, Aug 30 2018: (Start)
G.f.: x*(64 + 360*x - 1026*x^2 + 4170*x^3 - 7998*x^4 + 10591*x^5 - 9351*x^6 + 5629*x^7 - 2165*x^8 + 478*x^9 - 46*x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)

A224393 Number of 4Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

256, 10000, 86701, 497958, 2332222, 9331553, 32806574, 103452812, 297410156, 789731500, 1957606141, 4569537752, 10116846904, 21372349639, 43300242010, 84493906854, 159387825448, 291579791772, 518714491591, 899524090772
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 4 of A224391

Examples

			Some solutions for n=3
..0..0..1....0..1..2....3..3..3....0..3..3....0..0..3....2..2..2....1..1..3
..0..2..3....0..3..3....0..1..3....2..3..3....0..1..1....2..3..3....3..3..3
..2..2..2....2..3..3....0..0..1....2..3..3....1..1..2....0..2..3....1..3..3
..1..2..3....0..2..3....0..1..2....2..2..3....0..0..2....2..3..3....0..1..1
		

Formula

Empirical: a(n) = (3551/47900160)*n^12 + (17561/13305600)*n^11 + (410317/21772800)*n^10 + (127787/725760)*n^9 + (394837/290304)*n^8 + (4724393/1209600)*n^7 + (880093831/21772800)*n^6 - (673403/80640)*n^5 + (476636641/1088640)*n^4 + (58121267/907200)*n^3 - (1924453/415800)*n^2 - (1998055/2772)*n + 1906 for n>4

A224394 Number of 5Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

1024, 100000, 1268572, 8573507, 45648753, 211856287, 882833522, 3343528551, 11604617405, 37199618077, 110964317169, 310166468938, 817551602005, 2043560704475, 4868244723248, 11101332102787, 24326305539913
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 5 of A224391

Examples

			Some solutions for n=3
..0..0..0....0..0..2....0..0..2....0..0..2....0..0..2....0..2..2....0..2..2
..2..2..3....1..2..2....1..2..2....0..2..2....1..2..3....1..2..3....1..2..3
..2..2..2....1..1..2....1..2..2....0..2..3....2..3..3....1..2..3....0..2..2
..1..2..2....0..2..2....0..2..3....0..2..2....2..3..3....1..1..2....0..2..3
..1..1..2....1..3..3....2..2..2....1..3..3....2..3..3....0..1..3....0..2..3
		

Formula

Empirical: a(n) = (769/444787200)*n^15 + (348923/10897286400)*n^14 + (1834741/3113510400)*n^13 + (1653961/239500800)*n^12 + (15881209/239500800)*n^11 + (3185767/4354560)*n^10 + (6331231/21772800)*n^9 + (8051546371/152409600)*n^8 - (92949613/680400)*n^7 + (29776075747/21772800)*n^6 - (235108166129/119750400)*n^5 + (1142919607439/59875200)*n^4 - (2395878032771/43243200)*n^3 + (4577919285997/37837800)*n^2 - (3999067013/10010)*n + 824171 for n>7

A224395 Number of 6Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

4096, 1000000, 18794636, 152271025, 879830242, 4364554008, 19879000458, 84675848787, 337896379016, 1262027034092, 4414609771988, 14497401758306, 44849313719663, 131213360082438, 364483316826362, 964981060109623
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 6 of A224391

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..2....0..0..2....0..0..2....0..0..0....0..0..2....0..0..2
..0..2..3....0..2..2....2..2..3....0..2..2....2..2..2....2..2..2....0..2..2
..0..3..3....0..2..3....0..2..3....2..2..2....0..2..2....2..2..3....0..2..3
..1..2..3....0..0..1....0..1..1....0..2..3....1..3..3....2..2..3....3..3..3
..1..3..3....0..0..2....0..2..3....0..0..1....0..1..1....0..0..1....0..2..2
		

Formula

Empirical: a(n) = (42587101/1600593426432000)*n^18 + (83940121/177843714048000)*n^17 + (351548291/31384184832000)*n^16 + (404522743/2615348736000)*n^15 + (2603179801/1426553856000)*n^14 + (13975516589/747242496000)*n^13 + (1018677008761/3621252096000)*n^12 - (71772294491/67060224000)*n^11 + (9590385658061/219469824000)*n^10 - (19294207174217/73156608000)*n^9 + (6061000683461531/2414168064000)*n^8 - (67636294337629/7185024000)*n^7 + (580563104944166119/11769069312000)*n^6 + (14843452118300317/653837184000)*n^5 - (42702408306785177/59439744000)*n^4 + (14422633437701933/3027024000)*n^3 - (272645035897423741/15437822400)*n^2 + (10375478018905/1225224)*n + 82732433 for n>10

A224396 Number of 7Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.

Original entry on oeis.org

16384, 10000000, 279128617, 2780848289, 17642791909, 90682660877, 424124440444, 1895527656502, 8186764103582, 33998418651060, 134714450368164, 506671733476920, 1805110329656189, 6093246282673576, 19519515186829602
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 7 of A224391

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..1....0..0..2....0..0..2....0..0..2....0..0..0....0..0..2
..0..2..2....2..2..2....2..2..3....0..2..3....0..0..3....0..0..0....2..2..2
..0..1..1....0..2..2....0..2..2....0..0..0....0..3..3....0..1..1....0..3..3
..1..2..2....2..3..3....2..3..3....0..2..2....0..2..2....1..2..3....2..2..2
..0..1..2....0..2..3....0..3..3....0..0..3....0..1..3....1..2..3....0..1..1
		
Showing 1-10 of 11 results. Next