A224395 Number of 6Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
4096, 1000000, 18794636, 152271025, 879830242, 4364554008, 19879000458, 84675848787, 337896379016, 1262027034092, 4414609771988, 14497401758306, 44849313719663, 131213360082438, 364483316826362, 964981060109623
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0 ..0..0..0....0..0..2....0..0..2....0..0..2....0..0..0....0..0..2....0..0..2 ..0..2..3....0..2..2....2..2..3....0..2..2....2..2..2....2..2..2....0..2..2 ..0..3..3....0..2..3....0..2..3....2..2..2....0..2..2....2..2..3....0..2..3 ..1..2..3....0..0..1....0..1..1....0..2..3....1..3..3....2..2..3....3..3..3 ..1..3..3....0..0..2....0..2..3....0..0..1....0..1..1....0..0..1....0..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..96
Formula
Empirical: a(n) = (42587101/1600593426432000)*n^18 + (83940121/177843714048000)*n^17 + (351548291/31384184832000)*n^16 + (404522743/2615348736000)*n^15 + (2603179801/1426553856000)*n^14 + (13975516589/747242496000)*n^13 + (1018677008761/3621252096000)*n^12 - (71772294491/67060224000)*n^11 + (9590385658061/219469824000)*n^10 - (19294207174217/73156608000)*n^9 + (6061000683461531/2414168064000)*n^8 - (67636294337629/7185024000)*n^7 + (580563104944166119/11769069312000)*n^6 + (14843452118300317/653837184000)*n^5 - (42702408306785177/59439744000)*n^4 + (14422633437701933/3027024000)*n^3 - (272645035897423741/15437822400)*n^2 + (10375478018905/1225224)*n + 82732433 for n>10
Comments