cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224415 G.f.: exp( Sum_{n>=1} 5*L(n)*x^n/n ) where L(n) = Fibonacci(n-1)^2 + Fibonacci(n+1)^2 = A069921(n-1).

Original entry on oeis.org

1, 5, 25, 100, 380, 1348, 4610, 15250, 49250, 155860, 485228, 1489780, 4520475, 13577775, 40423155, 119413496, 350336200, 1021523000, 2962214500, 8547193700, 24551057380, 70231278200, 200150437000, 568435763000, 1609247086325, 4542394525369, 12786764813645
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2013

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/5) does not yield an integer series.
Compare to: exp( Sum_{n>=1} Lucas(n)*x^n/n ) = 1/(1-x-x^2) where Lucas(n) = Fibonacci(n-1) + Fibonacci(n+1).

Examples

			G.f.: 1 + 5*x + 25*x^2 + 100*x^3 + 380*x^4 + 1348*x^5 + 4610*x^6 +...
where
log(A(x))/5 = x + 5*x^2/2 + 10*x^3/3 + 29*x^4/4 + 73*x^5/5 + 194*x^6/6 + 505*x^7/7 + 1325*x^8/8 +...+ A069921(n-1)*x^n/n +...
		

Crossrefs

Cf. A069921.

Programs

  • PARI
    {L(n)=fibonacci(n-1)^2+fibonacci(n+1)^2}
    {a(n)=polcoeff(exp(sum(m=1, n, 5*L(m)*x^m/m)+x*O(x^n)), n)}
    for(n=0, 30, print1((a(n)), ", "))
    
  • PARI
    {a(n)=polcoeff(1/((1+x)^4*(1-3*x+x^2)^3+x*O(x^n)),n)}
    for(n=0, 30, print1((a(n)), ", "))

Formula

G.f.: 1 / ( (1+x)^4 * (1 - 3*x + x^2)^3 ).