A224443 Numbers that are the sum of three squares (square 0 allowed) in exactly three ways.
41, 50, 54, 65, 66, 74, 86, 90, 98, 99, 110, 113, 114, 117, 121, 122, 126, 131, 137, 145, 150, 164, 166, 169, 174, 178, 179, 181, 182, 186, 197, 200, 205, 216, 218, 219, 222, 226, 227, 229, 237, 258, 260, 264, 265, 275, 286, 291, 296, 302
Offset: 1
Keywords
Examples
a(1) = 41 = 0^2 + 4^2 + 5^2 = 1^2 + 2^2 + 6^2 = 3^3 + 4^2 + 4^2, and 41 is the first number m with A000164(m) = 3. The representations [a,b,c] for n = 1, ..., 10, are: n=1, 41: [0, 4, 5], [1, 2, 6], [3, 4, 4], n=2, 50: [0, 1, 7], [0, 5, 5], [3, 4, 5], n=3, 54: [1, 2, 7], [2, 5, 5], [3, 3, 6], n=4, 65: [0, 1, 8], [0, 4, 7], [2, 5, 6], n=5, 66: [1, 1, 8], [1, 4, 7], [4, 5, 5], n=6, 74: [0, 5, 7], [1, 3, 8], [3, 4, 7], n=7, 86: [1, 2, 9], [1, 6, 7], [5, 5, 6], n=8, 90: [0, 3, 9], [1, 5, 8], [4, 5, 7], n=9, 98: [0, 7, 7], [1, 4, 9], [3, 5, 8], n=10, 99: [1, 7, 7], [3, 3, 9], [5, 5, 7].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i^2
3, 4, min(4, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))))) end: a:= proc(n) option remember; local k; for k from 1 +`if`(n=1, 0, a(n-1)) while b(k, isqrt(k), 3)<>3 do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Apr 09 2013 -
Mathematica
Select[ Range[0, 400], Length[ PowersRepresentations[#, 3, 2]] == 3 &] (* Jean-François Alcover, Apr 09 2013 *)
Formula
This sequence gives the increasingly ordered numbers of the set {m integer | m = a^2 + b^2 + c^2, a, b and c integers with 0 <= a <= b <= c, and m has exactly three such representations}.
The sequence gives the increasingly ordered members of the set {m integer | A000164(m) = 3, m >= 0}.
Comments