A224482 Numbers n for which the Lucas numbers modulo n is nondefective (residue complete).
2, 3, 4, 6, 7, 9, 14, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2100
- B. Avila and Y. Chen, On moduli for which the Lucas numbers contain a complete residue system, Fibonacci Quarterly, 51 (2013), 151-152.
- Cheng Lien Lang and Mong Lung Lang, Fibonacci system and residue completeness, arXiv:1304.2892 [math.NT], 2013.
- Index entries for linear recurrences with constant coefficients, signature (3).
Programs
-
Mathematica
With[{nn = 27}, Union[TakeWhile[{2, 4, 6, 7, 14}, # <= 3^nn &], Array[3^# &, nn]]] (* Michael De Vlieger, Oct 06 2020 *)
Formula
G.f.: x*(15*x^7+13*x^6+12*x^5+11*x^4+6*x^3+5*x^2+3*x-2) / (3*x-1). - Colin Barker, Apr 14 2013
Extensions
Corrected (term 9 was 27), Joerg Arndt, Apr 14 2013
Comments