A224494 Smallest k such that k*2*p(n)^2+1=q is prime and k*2*q^2+1 is also prime.
5, 2, 29, 41, 9, 2, 71, 30, 32, 6, 35, 11, 6, 50, 2, 20, 9, 120, 56, 21, 9, 75, 90, 51, 51, 29, 107, 9, 74, 155, 116, 11, 29, 86, 116, 35, 200, 12, 11, 39, 9, 105, 51, 422, 36, 65, 6, 32, 27, 44, 9, 41, 14, 116, 266, 41, 29, 5, 50, 95, 27, 71, 69, 330, 21, 194
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[k*2*q^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 66}] (* Jean-François Alcover, Apr 12 2013 *)