cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224497 a(n) = sqrt(floor(n/2)! * Product_{k=1..n} Product_{i=1..k-1} gcd(k,i)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 12, 12, 96, 288, 5760, 5760, 829440, 829440, 46448640, 2090188800, 267544166400, 267544166400, 346737239654400, 346737239654400, 1109559166894080000, 209706682542981120000, 73816752255129354240000, 73816752255129354240000
Offset: 0

Views

Author

Peter Luschny, Apr 08 2013

Keywords

Comments

The order of the primes in the prime factorization of a(n) is given by
ord_{p}(a(n)) = (1/4)*Sum_{i>=1} floor(n/p^i)*(floor(n/p^i)-1) + (1/2)*Sum_{i>=1} floor(floor(n/2)/p^i).
For n > 1: a(n) = a(n-1) if and only if n is prime.

Crossrefs

Cf. A224479.

Programs

  • Maple
    A224497 := n -> sqrt(iquo(n,2)!*mul(mul(igcd(k,i), i=1..k-1), k=1..n)):
    seq(A224497(i), i = 0..23);
  • Sage
    def A224497(n):
        R = 1;
        for p in primes(n):
            s = 0; t = 0
            r = n; u = n//2
            while r > 0 :
                r = r//p; u = u//p
                t += u; s += r*(r-1)
            R *= p^((t+s/2)/2)
        return R
    [A224497(i) for i in (0..23)]

Formula

a(n) = sqrt(floor(n/2)! * A224479(n)).
A092287(n) = A056040(n) * a(n)^4.