A213176
Numbers n such that (13^n + 4^n)/17 is prime.
Original entry on oeis.org
7, 11, 31, 59, 73, 137, 563, 34819, 48751, 73849
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (13^# + 4^#)/17 ]& ]
-
is(n)=ispseudoprime((13^n+4^n)/17) \\ Charles R Greathouse IV, Jun 06 2017
A227049
Numbers k such that (15^k + 4^k)/19 is prime.
Original entry on oeis.org
3, 31, 157, 239, 1553, 5521, 25561
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (15^# + 4^#)/19 ]& ]
-
is(n)=ispseudoprime((15^n+4^n)/19) \\ Charles R Greathouse IV, Jun 06 2017
A338525
Numbers k such that (11^k + 6^k)/17 is prime.
Original entry on oeis.org
5, 7, 107, 383, 17359, 21929, 26393
Offset: 1
-
[n: n in [1..10000] |IsPrime((11^n + 6^n)/17)]
-
Select[Range[1, 10000], PrimeQ[(11^# + 6^#)/17] &]
-
for(n=1, 10000, if(isprime((11^n + 6^n)/17), print1(n, ", ")))
Showing 1-3 of 3 results.
Comments