A224505 Primes p such that p+1 is the sum of the squares of a pair of twin primes.
73, 1801, 3529, 10369, 20809, 103969, 115201, 426889, 649801, 2080801, 2205001, 2654209, 3266569, 3328201, 4428289, 5171329, 10017289, 10672201, 11347849, 14709889, 21780001, 22177801, 28395649, 29675809, 30701449, 32320801, 35583049, 40176649, 41368609
Offset: 1
Keywords
Examples
3529 (prime) is in the sequence because 3529+1 = 41^2+43^2, where 41 and 43 are twin primes.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: r in PrimesUpTo(5000) | IsPrime(r+2) and IsPrime(p) where p is 2*r^2+4*r+3];
-
Maple
A224505:=proc(q) local a,n; for n from 1 to q do if ithprime(n+1)-ithprime(n)=2 then a:=ithprime(n+1)^2+ithprime(n)^2-1; if isprime(a) then print(a); fi; fi; od; end: A224505(10^6); # Paolo P. Lava, Apr 17 2013
-
Mathematica
Select[(#[[1]]^2 + #[[2]]^2 - 1) & /@ Select[Partition[Prime[Range[700]], 2, 1], #[[2]] - #[[1]] == 2 &], PrimeQ]
Comments