A224519 For n >= 4, a(n) = (A056899(n) - A056899(n-1))/72, where A056899 lists the primes of the form k^2 + 2.
1, 2, 3, 9, 6, 7, 17, 46, 45, 17, 18, 19, 20, 90, 106, 260, 37, 77, 40, 41, 42, 132, 190, 50, 51, 105, 222, 58, 119, 61, 62, 127, 335, 70, 71, 145, 74, 75, 310, 326, 169, 531, 92, 93, 189, 490, 101, 735, 442, 113, 345, 235, 854, 510, 660, 271, 414, 710, 438
Offset: 4
Keywords
Examples
a(5) = (A056899(5) - A056899(4))/72 = (227 - 83)/72 = 2.
Programs
-
Maple
with(numtheory): T:=array(1..100):k:=0:for n from 3 to 2000 do: if type(n^2+2,prime)=true then k:=k+1:T[k]:=n^2+1:else fi:od:for i from 1 to k do: printf(`%d, `,(T[i+1]-T[i])/72):od:
Comments