A224529 Sequence f_n from a paper by Robert Osburn and Brundaban Sahu.
1, 2, 6, 26, 142, 876, 5790, 40020, 285582, 2087612, 15551620, 117629724, 900964558, 6973745924, 54464010540, 428645647572, 3396238954446, 27067890450300, 216857021933172, 1745460025192140, 14107695302434356, 114455036696796168, 931738743735004596
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 142*x^4 + 876*x^5 + 5790*x^6 + 40020*x^7 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Robert Osburn and Brundaban Sahu, Congruences via modular forms, arXiv:0912.0173 [math.NT], (Sep 02 2010).
- R. Osburn and B. Sahu, Congruences via modular forms, Proc. Amer. Math. Soc. 139 (2011), 2375-2381.
Programs
-
Maple
p := (1+224*x -864*x^2 -544*x^3 +9664*x^4 -26112*x^5 +36288*x^6 -27648*x^7 +9216*x^8) ; s := (1-14*x+57*x^2-106*x^3+90*x^4-16*x^5-19*x^6)^(1/2) ; A := (5*(53-400*x+944*x^2-912*x^3+288*x^4)-24*(11-16*x)*s)/p ; f := 4*x*(1-45*x+865*x^2-9270*x^3+60648*x^4 -249463*x^5+640904*x^6 -987056*x^7 +821224*x^8-249920*x^9 -71232*x^10+20610*x^11 -(1-21*x +148*x^2 -380*x^3+212*x^4)*(1-17*x+90*x^2-142*x^3 -14*x^4)*s)*(6*A)^3/23^6; ogf := A^(1/4) * hypergeom([1/12, 5/12],[1], f); series(ogf, x=0, 101); # Mark van Hoeij, Apr 12 2014
-
Mathematica
a[ n_] := If[ n < 0, 0, With[ {f = Series[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^23] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^23], {x, 0, n}], g = x QPochhammer[ x] QPochhammer[ x^23]}, SeriesCoefficient[ ComposeSeries[ f, InverseSeries[ g/f ]], {x, 0, n}]]]; (* Michael Somos, Sep 21 2013 *)
Formula
n^2 * a(n) = (14*n^2 - 21*n + 9) * a(n-1) + (-57*n^2 + 171*n - 136) * a(n-2) + (106*n^2 - 477*n + 551) * a(n-3) + (-90*n^2 + 540*n - 816) * a(n-4) + (16*n^2 - 120*n + 224) * a(n-5) + (19*n^2 - 171*n + 380) * a(n-6). - Michael Somos, Sep 21 2013
G.f. A(x) satisfies f(q) = A(g(q)) where f is the g.f. for A028959 and g(q) = eta(q) * eta(q^23) / f(q). - Michael Somos, Sep 21 2013
Comments