cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224529 Sequence f_n from a paper by Robert Osburn and Brundaban Sahu.

Original entry on oeis.org

1, 2, 6, 26, 142, 876, 5790, 40020, 285582, 2087612, 15551620, 117629724, 900964558, 6973745924, 54464010540, 428645647572, 3396238954446, 27067890450300, 216857021933172, 1745460025192140, 14107695302434356, 114455036696796168, 931738743735004596
Offset: 0

Views

Author

Joerg Arndt, Apr 09 2013

Keywords

Comments

Conjecture 1.1 of Osburn and Sahu is if p is a prime and JacobiSymbol(p, 23) = 1 and n>0 then a(n * p) == a(n) (mod p). - Michael Somos, Sep 21 2013

Examples

			G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 142*x^4 + 876*x^5 + 5790*x^6 + 40020*x^7 + ...
		

Crossrefs

Cf. A224530 (sequence F_n).

Programs

  • Maple
    p := (1+224*x -864*x^2 -544*x^3 +9664*x^4 -26112*x^5 +36288*x^6 -27648*x^7 +9216*x^8) ;
    s := (1-14*x+57*x^2-106*x^3+90*x^4-16*x^5-19*x^6)^(1/2) ;
    A := (5*(53-400*x+944*x^2-912*x^3+288*x^4)-24*(11-16*x)*s)/p ;
    f := 4*x*(1-45*x+865*x^2-9270*x^3+60648*x^4 -249463*x^5+640904*x^6 -987056*x^7 +821224*x^8-249920*x^9 -71232*x^10+20610*x^11 -(1-21*x +148*x^2 -380*x^3+212*x^4)*(1-17*x+90*x^2-142*x^3 -14*x^4)*s)*(6*A)^3/23^6;
    ogf := A^(1/4) * hypergeom([1/12, 5/12],[1], f);
    series(ogf, x=0, 101);  # Mark van Hoeij, Apr 12 2014
  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {f = Series[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^23] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^23], {x, 0, n}], g = x QPochhammer[ x] QPochhammer[ x^23]}, SeriesCoefficient[ ComposeSeries[ f, InverseSeries[ g/f ]], {x, 0, n}]]]; (* Michael Somos, Sep 21 2013 *)

Formula

n^2 * a(n) = (14*n^2 - 21*n + 9) * a(n-1) + (-57*n^2 + 171*n - 136) * a(n-2) + (106*n^2 - 477*n + 551) * a(n-3) + (-90*n^2 + 540*n - 816) * a(n-4) + (16*n^2 - 120*n + 224) * a(n-5) + (19*n^2 - 171*n + 380) * a(n-6). - Michael Somos, Sep 21 2013
G.f. A(x) satisfies f(q) = A(g(q)) where f is the g.f. for A028959 and g(q) = eta(q) * eta(q^23) / f(q). - Michael Somos, Sep 21 2013